Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике Задачи с решениями



Гмурман
Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике:Учебное пособие для студентов ВТУЗов.-3-е изд. перераб. и доп.-М.: Высш. школа, 1979.-400с., нл.

Плотность равномерного распределения сохраняет в интервале (а,b) постоянное значение, равное C; вне этого интервала f(x)=0. Найти значение постоянного параметра С.

Цена деления шкалы амперметра равна 0,1А. Показания округляют до ближайшего целого деления. Найти вероятность того, что при отсчете будет сделана ошибка, превышающая 0,02А.

Цена деления шкалы измерительного прибора равна 0,2. Показания прибора округляют до ближайшего целого деления. Найти вероятность того, что при отсчете будет сделана ошибка: а) меньшая 0,04; б) большая 0,05.

Автобусы некоторого маршрута идут строго по расписанию. Интервал движения 5мин. Найти вероятность того, что пассажир, подошедший к остановке, будет ожидать очередной автобус менее 3мин.

Минутная стрелка электрических часов перемещается скачком в конце каждой минуты. Найти вероятность того, что в данное мгновение часы покажут время, которое отличается от истинного не более чем на 20с.

Закон равномерного распределения задан плотностью вероятности в интервале (а,b); вне этого интервала f(x)=0. Найти функцию распределения F(x).

Найти математическое ожидание случайной величины X, равномерно распределенной в интервале (а,b).

Найти математическое ожидание случайной величины X, равномерно распределенной в интервале (2,8).

Найти дисперсию и среднеквадратичное отклонение случайной величины X, равномерно распределенной в интервале (a,b).

Найти дисперсию и среднеквадратичное отклонение случайной величины X, равномерно распределенной в интервале (2,8).

Равномерно распределенная случайная величина X задана плотностью распределения f(x)=1/(2l) в интервале (а-l,а+l); вне этого интервала f(x)=0. Найти математическое ожидание и дисперсию X.

Диаметр круга x измерен приближенно, причем a≤x≤b. Рассматривая диаметр как случайную величину X, распределенную равномерно в интервале (а,b), найти математическое ожидание и дисперсию площади круга.

Ребро куба x измерено приближенно, причем a≤x≤b. Рассматривая ребро куба как случайную величину X, распределенную равномерно в интервале (а,b), найти математическое ожидание и дисперсию объема куба.

Случайные величины X и Y независимы и распределены равномерно: X - в интервале (a,b), Y - в интервале (c,d). Найти математическое ожидание произведения XY.

Случайные величины X и Y независимы и распределены равномерно: X - в интервале (a,b), Y - в интервале (с,d). Найти дисперсию произведения XY.

Математическое ожидание нормально распределенной случайной величины X равно а=3 и среднеквадратическое отклонение σ=2. Написать плотность вероятности X.

Написать плотность вероятности нормально распределенной случайной величины X, зная, что M(Х)=3, D(X)=16.

Нормально распределенная случайная величина X задана плотностью:

Найти математическое ожидание и дисперсию X.

Математическое ожидание и среднеквадратическое отклонение нормально распределенной случайной величины X соответственно равны 10 и 2. Найти вероятность того, что в результате испытания X примет значение, заключенное в интервале (12,14).

Математическое ожидание и среднеквадратическое отклонение нормально распределенной случайной величины X соответственно равны 20 и 5. Найти вероятность того, что в результате испытания X примет значение, заключенное в интервале (15,25).

Автомат штампует детали. Контролируется длина детали X, которая распределена нормально с математическим ожиданием (проектная длина), равным 50мм. Фактически длина изготовленных деталей не менее 32 и не более 68мм. Найти вероятность того, что длина наудачу взятой детали: а) больше 55мм; б) меньше 40мм.

Производится измерение диаметра вала без систематических (одного знака) ошибок. Случайные ошибки измерения X подчинены нормальному закону со среднеквадратическим отклонением σ=10мм. Найти вероятность того, что измерение будет произведено с ошибкой, не превосходящей по абсолютной величине 15мм.

Производится взвешивание некоторого вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со среднеквадратическим отклонением σ=20г. Найти вероятность того, что взвешивание будет произведено с ошибкой, не превосходящей по абсолютной величине 10г.

Случайные ошибки измерения подчинены нормальному закону со среднеквадратическим отклонением σ=20мм и математическим ожиданием а=0. Найти вероятность того, что из трех независимых измерений ошибка хотя бы одного не превзойдет по абсолютной величине 4мм.

Автомат изготовляет шарики. Шарик считается годным, если отклонение X диаметра шарика от проектного размера по абсолютной величине меньше 0,7мм. Считая, что случайная величина X распределена нормально со среднеквадратическим отклонением σ=0,4мм, найти, сколько в среднем будет годных шариков среди ста изготовленных.

Деталь, изготовленная автоматом, считается годной, если отклонение ее контролируемого размера от проектного не превышает 10мм. Случайные отклонения контролируемого размера от проектного подчинены нормальному закону со среднеквадратическим отклонением σ=5мм и математическим ожиданием a=0. Сколько процентов годных деталей изготавливает автомат?

Бомбардировщик, пролетевший вдоль моста, длина которого 30м и ширина , сбросил бомбы. Случайные величины X и Y (расстояния от вертикальной и горизонтальной осей симметрии моста до места падения бомбы) независимы и, распределены нормально со среднеквадратическими отклонениями, соответственно равными 6 и , и математическими ожиданиями, равными нулю. Найти: а) вероятность попадания в мост одной сброшенной бомбы; б) вероятность разрушения моста, если сброшены две бомбы, причем известно, что для разрушения моста достаточно одного попадания.

Случайная величина X распределена нормально с математическим ожиданием a=10 и среднеквадратическим отклонением σ=5. Найти интервал, симметричный относительно математического ожидания, в который с вероятностью 0,9973 попадет величина X в результате испытания.

Случайная величина X распределена нормально со среднеквадратическим отклонением σ=5мм. Найти длину интервала, симметричного относительно математического ожидания, в который с вероятностью 0,9973 попадет X в результате испытания.

Станок-автомат изготовляет валики, причем контролируется их диаметр X. Считая, что X – нормально распределенная случайная величина с математическим ожиданием a=10мм и среднеквадратическим отклонением σ=0,1мм, найти интервал, симметричный относительно математического ожидания, в котором с вероятностью 0,9973 будут заключены диаметры изготовленных валиков.

Найти параметр λ показательного распределения: а) заданного плотностью f(x)=0 при x<0, f(x)=2е-2x при x≥0; б) заданного функцией распределения f(x)=0 при x<0 и F(x)=1-е-0,4x при x≥0.

Непрерывная случайная величина X распределена по показательному закону, заданному плотностью вероятности f(x)=3е-3x при x≥0; при x<0 f(x)=0. Найти вероятность того, что в результате испытания X попадает в интервал (0,13;0,7).

Непрерывная случайная величина X распределена по показательному закону, заданному плотностью вероятности f(x)=0,04е-0,04x при x≥0; при x<0 f(x)=0. Найти вероятность того, что в результате испытания X попадает в интервал (1;2).

Непрерывная случайная величина X распределена по показательному закону, заданному функцией распределения F(x)=1-е-0,6x при x≥0; при x<0 F(x)=0. Найти вероятность того, что в результате испытания X попадет в интервал (2,5).

Найти математическое ожидание показательного распределения, заданного при x≥0: а) плотностью f(x)=5е-5x; б) функцией распределения F(x)=1-е-0,1x.

Back to top