Закон больших чисел и предельные теоремы Задачи с решениями


  • Неравенство Маркова.
  • Неравенство Чебышева.
  • Теорема Чебышева.
  • Теорема Бернулли.
  • Центральная предельная теорема.

  • 1
  • 2

Используя неравенство Чебышева, оценить вероятность того, что случайная величина X отклонится от своего математического ожидания менее чем на три среднеквадратических отклонения.

Используя неравенство Чебышева в форме, приведенной в задаче 237, оценить вероятность того, что случайная величина X отклонится от своего математического ожидания не меньше чем на два среднеквадратических отклонения.

Устройство состоит из 10 независимо работающих элементов. Вероятность отказа каждого элемента за время Т равна 0,05. С помощью неравенства Чебышева оценить вероятность того, что абсолютная величина разности между числом отказавших элементов и средним числом (математическим ожиданием) отказов за время Т окажется: а) меньше двух; б) не меньше двух.

В осветительную сеть параллельно включено 20 ламп. Вероятность того, что за время Т лампа будет включена, равна 0,8. Пользуясь неравенством Чебышева, оценить вероятность того, что абсолютная величина разности между числом включенных ламп и средним числом (математическим ожиданием) включенных ламп за время Т окажется: а) меньше трех; б) не меньше трех.

Вероятность появления события А в каждом испытании равна 1/2. Используя неравенство Чебышева, оценить вероятность того, что число X появлений события А заключено в пределах от 40 до 60, если будет произведено 100 независимых испытаний

Вероятность появления события в каждом испытании равна 1/4. Используя неравенство Чебышева, оценить вероятность того, что число X появлений события заключено в пределах от 150 до 250, если будет произведено 800 испытаний.

Дискретная случайная величина X задана законом распределения:

X 0,3 0,6
p 0,2 0,8

Используя неравенство Чебышева, оценить вероятность того, что |Х — M(Х)|<0,2.

Дискретная случайная величина X задана законом распределения:

X 0,1 0,4 0,6
p 0,2 0,3 0,5

Используя неравенство Чебышева, оценить вероятность того, что .

Последовательность независимых случайных величин X1, X2,..., Хn,... задана законом распределения:

0
p

Применима ли к заданной последовательности теорема Чебышева?

Последовательность независимых случайных величин X1, X2,..., Хn,... задана законом распределения:

a -a
p

Применима ли к заданной последовательности теорема Чебышева?

Последовательность независимых случайных величин X1, X2,..., Хn,... задана законом распределения:

n+1 -n
p

а) Убедиться, что требование теоремы Чебышева о равномерной ограниченности дисперсий не выполняется; б) можно ли отсюда заключить, что к рассматриваемой последовательности теорема Чебышева неприменима?

Последовательность независимых случайных величин X1, X2,..., Хn,... задана законом распределения:

0
p

Применима ли к заданной последовательности теорема Чебышева?

Последовательность независимых случайных величин X1, X2,..., Хn,... задана законом распределения:

0
p

Применима ли к заданной последовательности теорема Чебышева?

Последовательность независимых случайных величин X1, X2,..., Хn,... задана законом распределения:

0
p

Применима ли к заданной последовательности теорема Чебышева?

Среднее количество вызовов, поступающих на коммутатор завода в течение часа, равно 300. Оценить вероятность того, что в течение следующего часа число вызовов на коммутатор: а) превысит 400; б) будет не более 500.

Сумма всех вкладов в отделении банка составляет 2 млн. рублей, а вероятность того, что случайно взятый вклад не превысит 10 тыс. рублей, равна 0,6. Что можно сказать о числе вкладчиков?

Средний расход воды на животноводческой ферме составляет 1000л. в день, а среднее квадратичное отклонение этой случайной величины не превышает 200л. Оценить вероятность того, что расход воды на ферме в любой выбранный день не превзойдет 2000л., используя: а) неравенство Маркова; б) неравенство Чебышева.

Вероятность выхода с автомата стандартной детали равна 0,96. Оценить с помощью неравенства Чебышева вероятность того, что число бракованных среди 2000 деталей находится в границах от 60 до 100 (включительно). Уточнить вероятность того же события с помощью интегральной теоремы Муавра—Лапласа. Объяснить различие полученных результатов.

Оценить вероятность того, что отклонение любой случайной величины от ее математического ожидания будет не более трех средних квадратических отклонений (по абсолютной величине) - (правило трех сигм).

По данным примера 2.8 с помощью неравенства Чебышева оценить вероятность того, что из 1000 новорожденных доля доживших до 50 лет будет отличаться от вероятности этого события не более чем на 0,04 (по абсолютной величине).

Для определения средней продолжительности горения электроламп в партии из 200 одинаковых ящиков было взято на выборку по одной лампе из каждого ящика. Оценить вероятность того, что средняя продолжительность горения отобранных 200 электроламп отличается от средней продолжительности горения ламп во всей партии не более чем на . (по абсолютной величине), если известно, что среднее квадратическое отклонение продолжительности горения ламп в каждом ящике меньше .

Сколько надо провести измерений данной величины, чтобы с вероятностью не менее 0,95 гарантировать отклонение средней арифметической этих измерений от истинного значения величины не более, чем на 1 (по абсолютной личине), если среднее квадратическое отклонение каждого измерений не превосходит 5?

Отделение банка обслуживает в среднем 100 клиентов в день. Оценить вероятность того, что сегодня в отделении банка будет обслужено: а) не более 200 клиентов; б) более 150 клиентов.

Среднее изменение курса акции компании в течение одних биржевых торгов составляет 0,3%. Оценить вероятность того, что на ближайших торгах курс изменится более чем на 3%.

Электростанция обслуживает сеть на 1600 электроламп, вероятность включения каждой из которых вечером равна 0,9. Оценить с помощью неравенства Чебышева вероятность того, что число ламп, включенных в сеть вечером, отличается от своего математического ожидания не более чем на 100 (по абсолютной величине). Найти вероятность того же события, используя следствие из интегральной теоремы Муавра—Лапласа.

Вероятность того, что акции, переданные на депозит, будут востребованы, равна 0,08. Оценить с помощью неравенства Чебышева вероятность того, что среди 1000 клиентов от 70 до 90 востребуют свои акции.

Среднее значение длины детали 50см, а дисперсия - 0,1. Используя неравенство Чебышева, оценить вероятность того, что случайно взятая деталь окажется по длине не менее 49,5 и не более 50,5см. Уточнить вероятность того же события, если известно, что длина случайно взятой детали имеет нормальный закон распределения.

Оценить вероятность того, что отклонение любой случайной величины от ее математического ожидания будет не более двух средних квадратических отклонений (по абсолютной величине).

В течение времени t эксплуатируются 500 приборов. Каждый прибор имеет надежность 0,98 и выходит из строя независимо от других. Оценить с помощью неравенства Чебышева вероятность того, что доля надежных приборов отличается от 0,98 не более чем на 0,1 (по абсолютной величине).

Вероятность сдачи в срок всех экзаменов студентом факультета равна 0,7. С помощью неравенства Чебышева оценить вероятность того, что доля сдавших в срок все экзамены из 2000 студентов заключена в границах от 0,66 до 0,74.

Бензоколонка N заправляет легковые и грузовые автомобили. Вероятность того, что проезжающий легковой автомобиль подъедет на заправку, равна 0,3. С помощью неравенства Чебышева найти границы, в которых с вероятностью, не меньшей 0,79, находится доля заправившихся в течение легковых автомобилей, если за это время всего заправилось 100 автомобилей.

В среднем 10% работоспособного населения некоторого региона — безработные. Оценить с помощью неравенства Чебышева вероятность того, что уровень безработицы среди обследованных 10000 работоспособных жителей города будет в пределах от 9 до 11% (включительно).

  • 1
  • 2
Back to top