- Неравенство Маркова.
- Неравенство Чебышева.
- Теорема Чебышева.
- Теорема Бернулли.
- Центральная предельная теорема.
- 1
- 2
Выход цыплят в инкубаторе составляет в среднем 70% числа заложенных яиц. Сколько нужно заложить яиц, чтобы с вероятностью, не меньшей 0,95, ожидать, что отклонение числа вылупившихся цыплят от математического ожидания их не превышало 50 (по абсолютной величине)? Решить задачу с помощью: а) неравенства Чебышева; б) интегральной теоремы Муавра-Лапласа.
Опыт работы страховой компании показывает, что страховой случай приходится примерно на каждый пятый договор. Оценить с помощью неравенства Чебышева необходимое количество договоров, которые следует заключить, чтобы с вероятностью 0,9 можно было утверждать, что доля страховых случаев отклонится от 0,2 не более чем на 0,01 (по абсолютной величине). Уточнить ответ с помощью следствия из интегральной теоремы Муавра—Лапласа.
В целях контроля из партии в 100 ящиков взяли по одной детали из каждого ящика и измерили их длину. Требуется оценить вероятность того, что вычисленная по данным выборки средняя длина детали отличается от средней длины детали во всей партии не более чем на 0,3 мм, если известно, что среднее квадратическое отклонение не превышает 0,8 мм.
Сколько нужно произвести измерений, чтобы с вероятностью, равной 0,9973, утверждать, что погрешность средней арифметической результатов этих измерений не превысит 0,01, если измерение характеризуется средним квадратическим отклонением, равным 0,03?
Независимые случайные величины X1,..., X8 имеют нормальный закон распределения с параметрами m=1, σ=√2. Рассматривается случайная величина Y=X1+X2+X3+…+X8. С помощью неравенства Чебышева оценить вероятности P{3<Y<13}, P{|Y - 8|>8}.
- 1
- 2