Сколько нужно произвести измерений, чтобы с вероятностью, равной 0,9973, утверждать, что погрешность средней арифметической результатов этих измерений не превысит 0,01, если измерение характеризуется средним квадратическим отклонением, равным 0,03?
Другие задачи по теории вероятности
Случайный процесс определяется формулой X(t)=XCos(ωt), где X — случайная величина. Найти основные характеристики этого процесса, если М(Х)=а, D(Х)=σ2.
Построить граф состояний следующего случайного процесса: устройство S состоит из двух узлов, каждый из которых в случайный момент времени может выйти из строя, после чего мгновенно начинается ремонт узла, продолжающий заранее неизвестное случайное время.
На автоматическую телефонную станцию поступает простейший поток вызовов с интенсивностью λ=1,2 вызовов в минуту. Найти вероятность того, что за две минуты а) не придет ни одного вызова; б) придет ровно один вызов; в) придет хотя бы один вызов.
Найти предельные вероятности для системы S из примера 7.2, граф состояний которой приведен на рисунке, при λ01=1, λ02=2, λ10=2, λ13=2, λ20=3, λ23=1, λ31=3, λ32=2.
Найти средний чистый доход от эксплуатации в стационарном режиме системы S в условиях примеров 7.2 и 7.4, если известно, что в единицу времени исправная работа первого и второго узлов приносит доход соответственно 10 и 6 ден.ед, а их ремонт требует затрат соответственно в 4 и 2 ден.ед. Оценить экономическую эффективность имеющей возможности уменьшения вдвое среднего времени ремонта каждого из двух узлов, если при этом придется вдвое увеличить затраты на ремонт каждого узла (в единицу времени).
Процесс гибели и размножения представлен графом (рисунок). Найти предельные вероятности состояний.
Известно, что заявки на телефонные переговоры в телевизионном ателье поступают с интенсивностью λ, равной 90 заявок в час, а средняя продолжительность разговора по телефону tоб=2мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.