- Закон распределения.
- Функция распределения.
- Математическое ожидание.
- Дисперсия.
- Среднеквадратическое отклонение.
- Теоретические моменты.
Дискретная случайная величина X задана законом распределения:
X | 1 | 3 | 6 | 8 |
p | 0,2 | 0,1 | 0,4 | 0,3 |
Построить многоугольник распределения.
Найти математическое ожидание дискретной случайной величины X, заданной законом распределения:
а)
X | -4 | 6 | 10 |
p | 0,2 | 0,3 | 0,5 |
б)
X | 0,21 | 0,54 | 0,61 |
p | 0,1 | 0,5 | 0,4 |
Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: a) Z=X+2Y, М(X)=5, M(Y)=3; б) Z=3X+4Y, М(X)=2, M(Y)=6.
Используя свойства математического ожидания, доказать, что: а) М(X-Y)=M(X)-M(Y); б) математическое ожидание отклонения X-М(Х) равно нулю.
Дискретная случайная величина X принимает три возможных значения: х1=4 с вероятностью р1=0,5; х2=6 с вероятностью р2=0,3 и х3 с вероятностью p3. Найти x3 и p3, зная, что М(Х)=8.
Дан перечень возможных значений дискретной случайной величины X: x1=-1, х2=0, x3=1, а также известны математические ожидания этой величины и ее квадрата: M(X)=0,1, M(X2)=0,9. Найти вероятности p1, p2, p3 соответствующие возможным значениям x1, x2, x3.
Дан перечень возможных значений дискретной случайной величины X: x1=1, х2=2, x3=3, а также известны математические ожидания этой величины и ее квадрата: M(X)=2,3, M(X2)=5,9. Найти вероятности, соответствующие возможным значениям X.
В партии из 10 деталей содержится три нестандартных. Наудачу отобраны две детали. Найти математическое ожидание дискретной случайной величины X - числа нестандартных деталей среди двух отобранных.
Найти математическое ожидание дискретной случайной величины X - числа таких бросаний пяти игральных костей, в каждом из которых на двух костях появится по одному очку, если общее число бросаний равно двадцати.
Устройство состоит из n элементов. Вероятность отказа любого элемента за время опыта равна р. Найти математическое ожидание числа таких опытов, в каждом из которых откажет ровно m элементов, если всего произведено N опытов. Предполагается, что опыты независимы один от другого.
Бросают n игральных костей. Найти математическое ожидание числа таких бросаний, в каждом из которых выпадет ровно m шестерок, если общее число бросаний равно N.
Бросают n игральных костей. Найти математическое ожидание суммы числа очков, которые выпадут на всех гранях.
Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0,9. В каждой партии содержится пять изделий. Найти математическое ожидание дискретной случайной величины X - числа партий, в каждой из которых окажется ровно четыре стандартных изделия, - если проверке подлежит 50 партий.
Доказать: 1) M(Y)=aM(X)+b, если Y=aX+b; 2) M(Y)=ΣaiM(Xi)+b, если Y=Σ(aiXi)+b.
События А1, А2, ..., Аn несовместны и образуют полную группу; вероятности появления этих событий соответственно равны p1, p2 , ..., pn. Если в итоге испытания появляется событие Ai (i = 1, 2, ..., n), то дискретная случайная величина X принимает возможное значение xi, равное вероятности pi появления события Аi. Доказать, что математическое ожидание случайной величины X имеет наименьшее значение, если вероятности всех событий одинаковы.
Доказать, что математическое ожидание дискретной случайной величины заключено между наименьшим и наибольшим ее возможными значениями.
Доказать, что если случайные величины X1, X2,..., Хn независимы, положительны и одинаково распределены, то
Доказать, что если случайные величины X1, X2, Х3, X4, Х5 независимы, положительны и одинаково распределены, то
Найти математическое ожидание дискретной случайной величины X, распределенной по закону Пуассона:
X | 0 | 1 | 2 | ... | k | ... |
p | ... | ... |
Случайные величины X и Y независимы. Найти дисперсию случайной величины Z=3X+2Y, если известно, что D(Х)=5, D(Y)=6.
Случайные величины X и Y независимы. Найти дисперсию случайной величины Z=2X+3Y, если известно, что D(Х)=4, D(Y)=5.
Найти дисперсию и среднее квадратическое отклонение дискретной случайной величины X, заданной законом распределения:
X | -5 | 2 | 3 | 4 |
p | 0,4 | 0,3 | 0,1 | 0,2 |
Найти дисперсию и среднее квадратическое отклонение дискретной случайной величины X, заданной законом распределения:
а)
X | 4,3 | 5,1 | 10,6 |
p | 0,2 | 0,3 | 0,5 |
б)
X | 131 | 140 | 160 | 180 |
p | 0,05 | 0,1 | 0,25 | 0,6 |
Дискретная случайная величина X имеет только два возможных значения x1 и x2, причем равновероятных. Доказать, что дисперсия величины X равна квадрату полуразности возможных значений:
Найти дисперсию дискретной случайной величины X - числа появлений события А в пяти независимых испытаниях, если вероятность появления событий А в каждом испытании равна 0,2.
Найти дисперсию дискретной случайной величины X - числа отказов элемента некоторого устройства в десяти независимых опытах, если вероятность отказа элемента в каждом опыте равна 0,9.
Найти дисперсию дискретной случайной величины X - числа появлений события А в двух независимых испытаниях, если вероятности появления события в этих испытаниях одинаковы и известно, что М(X)=1,2.
Найти дисперсию дискретной случайной величины X - числа появлений события А в двух независимых испытаниях, если вероятности появления события в этих испытаниях одинаковы и известно, что М(X)=0,9.
Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А, если дисперсия числа появлений события в трех независимых испытаниях равна 0,63.
Дискретная случайная величина X имеет только два возможных значения: x1 и х2, причем х2>х1. Вероятность того, что X примет значение x1 равна 0,6. Найти закон распределения величины X, если математическое ожидание и дисперсия известны: М(Х)=1,4; D(X)=0,24.
Дискретная случайная величина X имеет только два возможных значения: x1 и х2, причем х1<х2. Вероятность того, что X примет значение х1 равна 0,2. Найти закон распределения X, зная математическое ожидание М(X)=2,6 и среднеквадратическое отклонение σ(Х)=0,8.
Дискретная случайная величина X имеет только три возможных значения: x1=1, х2 и х3, причем х1<х2<х3. Вероятность того, что X примет значение х1 и х2 соответственно равны 0,3 и 0,2. Найти закон распределения X, зная математическое ожидание М(X)=2,2 и дисперсию D(Х)=0,76.
Брошены n игральных костей. Найти дисперсию суммы числа очков, которые могут появиться на всех выпавших гранях.
Вероятность наступления события в каждом испытании равна p (0<p<1). Испытания производятся до тех пор, пока событие не наступит. Найти: а) математическое ожидание дискретной случайной величины X - числа испытаний, которые надо произвести до появления события; б) дисперсию величины X.
Производятся многократные испытания некоторого элемента на надежность до тех пор, пока элемент не откажет. Найти: а) математическое ожидание дискретной случайной величины X - числа опытов, которые надо произвести; б) дисперсию X. Вероятность отказа элемента в каждом опыте равна 0,1.