Найти математическое ожидание дискретной случайной величины X - числа таких бросаний пяти игральных костей, в каждом из которых на двух костях появится по одному очку, если общее число бросаний равно двадцати.
Другие задачи по теории вероятности
Устройство состоит из n элементов. Вероятность отказа любого элемента за время опыта равна р. Найти математическое ожидание числа таких опытов, в каждом из которых откажет ровно m элементов, если всего произведено N опытов. Предполагается, что опыты независимы один от другого.
Бросают n игральных костей. Найти математическое ожидание числа таких бросаний, в каждом из которых выпадет ровно m шестерок, если общее число бросаний равно N.
Бросают n игральных костей. Найти математическое ожидание суммы числа очков, которые выпадут на всех гранях.
Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0,9. В каждой партии содержится пять изделий. Найти математическое ожидание дискретной случайной величины X - числа партий, в каждой из которых окажется ровно четыре стандартных изделия, - если проверке подлежит 50 партий.
Доказать: 1) M(Y)=aM(X)+b, если Y=aX+b; 2) M(Y)=ΣaiM(Xi)+b, если Y=Σ(aiXi)+b.
События А1, А2, ..., Аn несовместны и образуют полную группу; вероятности появления этих событий соответственно равны p1, p2 , ..., pn. Если в итоге испытания появляется событие Ai (i = 1, 2, ..., n), то дискретная случайная величина X принимает возможное значение xi, равное вероятности pi появления события Аi. Доказать, что математическое ожидание случайной величины X имеет наименьшее значение, если вероятности всех событий одинаковы.
Доказать, что математическое ожидание дискретной случайной величины заключено между наименьшим и наибольшим ее возможными значениями.