Доказать: 1) M(Y)=aM(X)+b, если Y=aX+b; 2) M(Y)=ΣaiM(Xi)+b, если Y=Σ(aiXi)+b.
Другие задачи по теории вероятности
События А1, А2, ..., Аn несовместны и образуют полную группу; вероятности появления этих событий соответственно равны p1, p2 , ..., pn. Если в итоге испытания появляется событие Ai (i = 1, 2, ..., n), то дискретная случайная величина X принимает возможное значение xi, равное вероятности pi появления события Аi. Доказать, что математическое ожидание случайной величины X имеет наименьшее значение, если вероятности всех событий одинаковы.
Доказать, что математическое ожидание дискретной случайной величины заключено между наименьшим и наибольшим ее возможными значениями.
Доказать, что если случайные величины X1, X2,..., Хn независимы, положительны и одинаково распределены, то
Доказать, что если случайные величины X1, X2, Х3, X4, Х5 независимы, положительны и одинаково распределены, то
Найти математическое ожидание дискретной случайной величины X, распределенной по закону Пуассона:
X | 0 | 1 | 2 | ... | k | ... |
p | ... | ... |
Случайные величины X и Y независимы. Найти дисперсию случайной величины Z=3X+2Y, если известно, что D(Х)=5, D(Y)=6.
Случайные величины X и Y независимы. Найти дисперсию случайной величины Z=2X+3Y, если известно, что D(Х)=4, D(Y)=5.