- Закон распределения.
- Функция распределения.
- Математическое ожидание.
- Дисперсия.
- Среднеквадратическое отклонение.
- Теоретические моменты.
- 1
- 2
Дискретная случайная величина X задана законом распределения:
X | 1 | 3 | 6 | 8 |
p | 0,2 | 0,1 | 0,4 | 0,3 |
Построить многоугольник распределения.
Найти математическое ожидание дискретной случайной величины X, заданной законом распределения:
а)
X | -4 | 6 | 10 |
p | 0,2 | 0,3 | 0,5 |
б)
X | 0,21 | 0,54 | 0,61 |
p | 0,1 | 0,5 | 0,4 |
Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: a) Z=X+2Y, М(X)=5, M(Y)=3; б) Z=3X+4Y, М(X)=2, M(Y)=6.
Дан перечень возможных значений дискретной случайной величины X: x1=-1, х2=0, x3=1, а также известны математические ожидания этой величины и ее квадрата: M(X)=0,1, M(X2)=0,9. Найти вероятности p1, p2, p3 соответствующие возможным значениям x1, x2, x3.
Найти математическое ожидание дискретной случайной величины X - числа таких бросаний пяти игральных костей, в каждом из которых на двух костях появится по одному очку, если общее число бросаний равно двадцати.
Устройство состоит из n элементов. Вероятность отказа любого элемента за время опыта равна р. Найти математическое ожидание числа таких опытов, в каждом из которых откажет ровно m элементов, если всего произведено N опытов. Предполагается, что опыты независимы один от другого.
Бросают n игральных костей. Найти математическое ожидание суммы числа очков, которые выпадут на всех гранях.
События А1, А2, ..., Аn несовместны и образуют полную группу; вероятности появления этих событий соответственно равны p1, p2 , ..., pn. Если в итоге испытания появляется событие Ai (i = 1, 2, ..., n), то дискретная случайная величина X принимает возможное значение xi, равное вероятности pi появления события Аi. Доказать, что математическое ожидание случайной величины X имеет наименьшее значение, если вероятности всех событий одинаковы.
Доказать, что математическое ожидание дискретной случайной величины заключено между наименьшим и наибольшим ее возможными значениями.
Доказать, что если случайные величины X1, X2,..., Хn независимы, положительны и одинаково распределены, то
Найти математическое ожидание дискретной случайной величины X, распределенной по закону Пуассона:
X | 0 | 1 | 2 | ... | k | ... |
p | ... | ... |
Случайные величины X и Y независимы. Найти дисперсию случайной величины Z=3X+2Y, если известно, что D(Х)=5, D(Y)=6.
Найти дисперсию и среднее квадратическое отклонение дискретной случайной величины X, заданной законом распределения:
X | -5 | 2 | 3 | 4 |
p | 0,4 | 0,3 | 0,1 | 0,2 |
Дискретная случайная величина X имеет только два возможных значения x1 и x2, причем равновероятных. Доказать, что дисперсия величины X равна квадрату полуразности возможных значений:
Найти дисперсию дискретной случайной величины X - числа появлений события А в пяти независимых испытаниях, если вероятность появления событий А в каждом испытании равна 0,2.
Найти дисперсию дискретной случайной величины X - числа появлений события А в двух независимых испытаниях, если вероятности появления события в этих испытаниях одинаковы и известно, что М(X)=1,2.
Дискретная случайная величина X имеет только два возможных значения: x1 и х2, причем х2>х1. Вероятность того, что X примет значение x1 равна 0,6. Найти закон распределения величины X, если математическое ожидание и дисперсия известны: М(Х)=1,4; D(X)=0,24.
Брошены n игральных костей. Найти дисперсию суммы числа очков, которые могут появиться на всех выпавших гранях.
Вероятность наступления события в каждом испытании равна p (0<p<1). Испытания производятся до тех пор, пока событие не наступит. Найти: а) математическое ожидание дискретной случайной величины X - числа испытаний, которые надо произвести до появления события; б) дисперсию величины X.
Доказать неравенство , где хi и xk - любые два возможных значения случайной величины X.
Доказать, что если случайная величина X имеет наименьшее и наибольшее возможные значения, соответственно равные а и b, то дисперсия этой случайной величины не превышает квадрата полуразности между этими значениями: .
Доказать, что если X и Y—независимые случайные величины, то D(XY)=D(X)∙D(Y)+n2D(X)+m2D(Y), где m=M(X), n=M(Y).
Найти дисперсию дискретной случайной величины X, распределенной по закону Пуассона:
X | 0 | 1 | 2 | ... | k | ... |
p | ... | ... |
Дискретная случайная величина X задана законом распределения:
X | 1 | 3 |
p | 0,4 | 0,6 |
Найти начальные моменты первого, второго и третьего порядков.
Дискретная случайная величина X задана законом распределения:
X | 1 | 2 | 4 |
p | 0,1 | 0,3 | 0,6 |
Найти начальные моменты первого, второго, третьего и четвертого порядков.
Доказать, что центральный момент третьего порядка связан с начальными моментами равенством: .
Пусть X=X1+X2, где X1 и Х2 — независимые случайные величины, имеющие центральные моменты третьего порядка, соответственно равные μ31 и μ32. Доказать, что μ3= μ31+ μ32 - центральный момент третьего порядка величины X.
Дискретная случайная величина X задана законом распределения:
X | 2 | 4 | 7 |
p | 0,5 | 0,2 | 0,3 |
Найти функцию распределения F(x) и построить её график.
В лотерее разыгрываются: автомобиль стоимостью 5000 ден.ед., 4 телевизора стоимостью 250 ден.ед., 5 видеомагнитофонов стоимостью 200 ден.ед. Всего продается 1000 билетов по 7 ден.ед. Составить закон распределения чистого выигрыша, полученного участником лотереи, купившим один билет.
Вероятности того, что студент сдаст семестровый экзамен в сессию по дисциплинам А и В, равны соответственно 0,7 и 0,9. Составить закон распределения числа семестровых экзаменов, которые сдаст студент.
Дана случайная величина X:
xi | -2 | 1 | 2 |
pj | 0,5 | 0,3 | 0,2 |
Найти закон распределения случайных величин: а) Y = 3X, б) Z = X2.
Даны законы распределения двух независимых случайных величин:
X:
xi | 0 | 2 | 4 |
pi | 0,5 | 0,2 | 0,3 |
Y:
yi | -2 | 0 | 2 |
pj | 0,1 | 0,6 | 0,2 |
Найти закон распределения случайных величин: а) Z=Х-Y; б) U = XY.
Вычислить М(Х) и M(Y) в задаче о стрелках. Известны законы распределения случайных величин X и Y - числа очков, выбиваемых 1-м и 2-м стрелками.
xi | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
pi | 0,15 | 0,11 | 0,04 | 0,05 | 0,04 | 0,10 | 0,10 | 0,04 | 0,05 | 0,12 | 0,20 |
Вычислить М(Х) для случайной величины Х чистого выигрыша по данным примера 3.1: В лотерее разыгрываются: автомобиль стоимостью 5000 ден.ед., 4 телевизора стоимостью 250 ден.ед., 5 видеомагнитофонов стоимостью 200 ден.ед. Всего продается 1000 билетов по 7 ден.ед.
Найти математическое ожидание случайной величины Z=8Х-5Y+7, если известно, что М(Х)=3, М(Y)=2.
- 1
- 2