«МАТИ» – Российский государственный технологический университет им. К.Э. Циолковского. Задачи с решениями


Из колоды, в которой содержится 36 карт, выбираются без возвращения 2 карты. Найти вероятность того, что будут выбраны карты одной масти.

На плоскости проведены параллельные линии, расстояния между которыми попеременно равны 1,5 и 8см. Найти вероятность того, что наудачу брошенный на эту плоскость круг радиуса 2,5см не будет пересечен ни одной линией.

В урне содержится 7 белых, 5 черных и 8 красных шаров. Шары выбираются наугад, причем белый или черный шар в урну не возвращается, а извлеченный из урны красный шар после проверки его цвета укладывается назад в урну. Найти вероятность того, что среди первых двух последовательно вынутых шаров будет один черный.

Машина-экзаменатор на каждую задачу предлагает четыре ответа, из которых только один верный. В билете пять задач. Студент, не желая их решать, нажимает на клавиши случайным образом. Какова вероятность сдать зачет машине-экзаменатору, если для получения положительной оценки надо решить не менее трех задач.

Стрелок дважды стреляет по мишени, состоящей из трех концентрических кругов. За попадание в центральный круг дается три очка, в окружающее его кольцо — два и за попадание во внешнее кольцо — одно очко. Вероятности попадания в эти части мишени равны соответственно 0,2, 0,3 и 0,3. Найти закон распределения общего числа набранных очков.

В каждом из двух таймов футбольного матча обе команды вместе забивают три мяча с вероятностью 0,2, два мяча — с вероятностью 0,2, один мяч — с вероятностью 0,3 и с вероятностью 0,3 не забивают мячей. Найти математическое ожидание общего числа забитых в матче мячей.

Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра а. б) Построить график функции распределения F(x). в) Найти M(X), D(X) и σ(X). г) Найти вероятность того, что случайная величина X примет значения из интервала (–1; 1).

Найти математическое ожидание и дисперсию нормально распределенной случайной величины X, если известно, что P{X<1}=0,1 и P{X>5}=0,2. Построить кривую распределения и найти ее максимум.

Из полного набора костей домино наугад выбираются две. Определить вероятность того, что обе они — дубли.

На отрезке AB длины l наудачу поставлены две точки L и M. Найти вероятность того, что точка L будет ближе к точке M, чем к точке A.

В тире имеется пять ружей, вероятности попадания из которых равны соответственно 0,5, 0,6, 0,7, 0,8 и 0,9. Определить вероятность попадания при одном выстреле, если стрелок берет одно из ружей наудачу.

В волейбольном матче игра происходит до тех пор, пока одна из команд не выиграет трех партий. Вероятность победы команды A в каждой партии равна 0,4. Определить вероятность того, что в матче победит команда A, если известно, что она проиграла вторую партию.

Во время эстафетных соревнований по биатлону спортсмену требуется поразить на огневом рубеже 5 мишеней, имея для этого 7 патронов. Вероятность попадания в мишень при одном выстреле составляет 0,8. Определить вероятность того, что все мишени будут поражены ровно семью патронами.

В каждом из двух таймов футбольного матча обе команды вместе забивают три мяча с вероятностью 0,1, два мяча — с вероятностью 0,2, один мяч — с вероятностью 0,4 и с вероятностью 0,3 не забивают мячей. Найти математическое ожидание общего числа забитых в матче мячей.

Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра а. б) Построить график функции распределения F(x). в) Найти M(X), D(X) и σ(X). г) Найти вероятность того, что случайная величина X примет значения из интервала (3; 4).

Независимые случайные величины X1,..., X8 имеют нормальный закон распределения с параметрами m=1, σ=√2. Рассматривается случайная величина Y=X1+X2+X3+…+X8. С помощью неравенства Чебышева оценить вероятности P{3<Y<13}, P{|Y - 8|>8}.

Имеется урна, в которой 3 белых и 6 черных шаров. Определить вероятность того, что при выборе из урны двух шаров они окажутся разных цветов.

На плоскость с нанесенной на ней квадратной сеткой многократно бросается монета радиуса r, в результате чего установлено, что в 40% случаев монета не пересекает ни одной стороны квадрата. Оценить размер сетки.

В волейбольном матче игра происходит до тех пор, пока одна из команд не выиграет трех партий. Вероятность победы команды A в каждой партии равна 0,4. Определить вероятность того, что команда Б победит со счетом 3:0.

Для контроля продукции из 3 партий деталей взята для испытания 1 деталь. Как велика вероятность обнаружения бракованной продукции, если в одной партии 2/3 деталей бракованные, а в двух других — все доброкачественные?

Стрелок производит восемь выстрелов по мишени, состоящей из центральной части, за попадание в которую он получает 2 очка, и остальной части, за попадание в которую стрелок получает 1 очко. Определить вероятность того, что стрелок наберет 14 очков, если вероятность попадания в центральную часть круга равна 0,1, а в остальную часть — 0,3.

Из полного набора костей домино наугад выбираются две. Найти закон распределения и математическое ожидание количества появлений цифры «4» на выбранных костях.

Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра а. б) Построить график функции распределения F(x). в) Найти M(X), D(X) и σ(X). г) Найти вероятность того, что случайная величина X примет значения из интервала (3; 5).

Случайная величина X имеет нормальный закон распределения. Известно, что M(X)=-2, D(X)=1. Найти: а) плотность вероятности случайной величины X и ее значения в точках x=-1, x=0, x=2; б) вероятности P{-2<X<0}, P{X>1}.

В розыгрыше первенства по баскетболу участвуют 18 команд, из которых случайным образом формируются две группы по 9 команд в каждой. Среди участников соревнований имеется 5 команд экстра-класса. Найти вероятность того, что все эти команды попадут в одну и ту же группу.

На окружности радиуса R наудачу поставлены три точки A, B, C. Какова вероятность того, что треугольник ABC — остроугольный?

Из полного набора костей домино наугад выбираются две. Найти вероятность того, что выбранные кости можно приставить друг к другу.

Событие B наступает в том случае, если событие A появится не менее трех раз. Определить вероятность появления события B, если вероятность события A в каждом опыте равна 0,35 и произведено 5 независимых опытов.

Из колоды в 52 карты выбираются 4 карты. Для случайной величины X — количества карт червонной масти среди отобранных — найти закон распределения и математическое ожидание.

Во время эстафетных соревнований по биатлону спортсмену требуется поразить на огневом рубеже 5 мишеней, имея для этого 7 патронов. Вероятность попадания в мишень при одном выстреле составляет 0,8. Найти дисперсию случайной величины X — числа пораженных мишеней.

Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра а. б) Построить график функции распределения F(x). в) Найти M(X), D(X) и σ(X). г) Найти вероятность того, что случайная величина X примет значения из интервала (5; 6).

Случайная величина X имеет нормальный закон распределения с параметрами m=2, σ=2 . Найти: а) плотность вероятности f(x); б) математическое ожидание и дисперсию; в) вероятности P{1<X<4}, P{X<2,5}.

На девяти карточках написаны цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8. Две из них вынимаются наугад и укладываются на стол в порядке появления, затем читается полученное число. Найти вероятность того, что оно будет четным.

Какова вероятность того, что из трех взятых наудачу отрезков длины не более l можно построить треугольник?

Батарея из трех орудий произвела залп, причем два снаряда попали в цель. Найти вероятность того, что первое орудие дало попадание, если вероятности попадания в цель первым, вторым и третьим орудиями соответственно равны 0,4, 0,3, 0,5.

Back to top