Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №236, стр.082


Используя неравенство Чебышева, оценить вероятность того, что случайная величина X отклонится от своего математического ожидания менее чем на три среднеквадратических отклонения.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Используя неравенство Чебышева в форме, приведенной в задаче 237, оценить вероятность того, что случайная величина X отклонится от своего математического ожидания не меньше чем на два среднеквадратических отклонения.

Используя неравенство Чебышева, оценить вероятность того, что |X-M(X)|<0,2, если D(X)=0,004.

Дано: P(|X-M(X)|<ε)≥0,9 и D(X)=0,009. Используя неравенство Чебышева, оценить ε снизу.

Устройство состоит из 10 независимо работающих элементов. Вероятность отказа каждого элемента за время Т равна 0,05. С помощью неравенства Чебышева оценить вероятность того, что абсолютная величина разности между числом отказавших элементов и средним числом (математическим ожиданием) отказов за время Т окажется: а) меньше двух; б) не меньше двух.

В осветительную сеть параллельно включено 20 ламп. Вероятность того, что за время Т лампа будет включена, равна 0,8. Пользуясь неравенством Чебышева, оценить вероятность того, что абсолютная величина разности между числом включенных ламп и средним числом (математическим ожиданием) включенных ламп за время Т окажется: а) меньше трех; б) не меньше трех.

Вероятность появления события А в каждом испытании равна 1/2. Используя неравенство Чебышева, оценить вероятность того, что число X появлений события А заключено в пределах от 40 до 60, если будет произведено 100 независимых испытаний

Back to top