Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №431, стр.148


Задана плотность совместного распределения непрерывной двумерной случайной величины (X,Y):

Найти: а) математические ожидания; б) дисперсии составляющих X и Y.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Задана плотность совместного распределения непрерывной двумерной случайной величины (X,Y): f(x,y)=2CosxCosy в квадрате 0≤x≤π/4, 0≤y≤π/4; вне квадрата f(x,y)=0. Найти математические ожидания составляющих.

Задана плотность совместного распределения непрерывной двумерной случайной величины (X,Y):

f(x,y)=(1/2)Sin(x+y)

в квадрате 0≤x≤π/2, 0≤y≤π/2; вне квадрата f(x,y)=0. Найти математические ожидания и дисперсии составляющих.

Задана плотность совместного распределения непрерывной двумерной случайной величины (X,Y):

f(x,y)=(1/4)SinxSiny

в квадрате 0≤x≤π, 0≤y≤π; вне квадрата f(x,y)=0. Найти: а) математические ожидания и дисперсии составляющих; б) корреляционный момент.

Непрерывная двумерная случайная величина (X,Y) распределена равномерно в круге радиуса r с центром в начале координат. Доказать, что X и Y зависимы, но некоррелированные.

Доказать, что если двумерную плотность вероятности системы случайных величин (X,Y) можно представить в виде произведения двух функций, одна из которых зависит только от x, а другая - только от y, то величины X и Y независимы.

Доказать, что если X и Y связаны линейной зависимостью Y=aX+b, то абсолютная величина коэффициента корреляции равна единице.

Используя неравенство Чебышева, оценить вероятность того, что случайная величина X отклонится от своего математического ожидания менее чем на три среднеквадратических отклонения.

Back to top