Доказать, что если двумерную плотность вероятности системы случайных величин (X,Y) можно представить в виде произведения двух функций, одна из которых зависит только от x, а другая - только от y, то величины X и Y независимы.
Другие задачи по теории вероятности
Доказать, что если X и Y связаны линейной зависимостью Y=aX+b, то абсолютная величина коэффициента корреляции равна единице.
Используя неравенство Чебышева, оценить вероятность того, что случайная величина X отклонится от своего математического ожидания менее чем на три среднеквадратических отклонения.
Доказать неравенство Чебышева в форме
Используя неравенство Чебышева в форме, приведенной в задаче 237, оценить вероятность того, что случайная величина X отклонится от своего математического ожидания не меньше чем на два среднеквадратических отклонения.
Используя неравенство Чебышева, оценить вероятность того, что |X-M(X)|<0,2, если D(X)=0,004.
Дано: P(|X-M(X)|<ε)≥0,9 и D(X)=0,009. Используя неравенство Чебышева, оценить ε снизу.
Устройство состоит из 10 независимо работающих элементов. Вероятность отказа каждого элемента за время Т равна 0,05. С помощью неравенства Чебышева оценить вероятность того, что абсолютная величина разности между числом отказавших элементов и средним числом (математическим ожиданием) отказов за время Т окажется: а) меньше двух; б) не меньше двух.