По данным примера 2.8 с помощью неравенства Чебышева оценить вероятность того, что из 1000 новорожденных доля доживших до 50 лет будет отличаться от вероятности этого события не более чем на 0,04 (по абсолютной величине).
Другие задачи по теории вероятности
Для определения средней продолжительности горения электроламп в партии из 200 одинаковых ящиков было взято на выборку по одной лампе из каждого ящика. Оценить вероятность того, что средняя продолжительность горения отобранных 200 электроламп отличается от средней продолжительности горения ламп во всей партии не более чем на 5ч. (по абсолютной величине), если известно, что среднее квадратическое отклонение продолжительности горения ламп в каждом ящике меньше 7ч.
Сколько надо провести измерений данной величины, чтобы с вероятностью не менее 0,95 гарантировать отклонение средней арифметической этих измерений от истинного значения величины не более, чем на 1 (по абсолютной личине), если среднее квадратическое отклонение каждого измерений не превосходит 5?
Отделение банка обслуживает в среднем 100 клиентов в день. Оценить вероятность того, что сегодня в отделении банка будет обслужено: а) не более 200 клиентов; б) более 150 клиентов.
Среднее изменение курса акции компании в течение одних биржевых торгов составляет 0,3%. Оценить вероятность того, что на ближайших торгах курс изменится более чем на 3%.
Электростанция обслуживает сеть на 1600 электроламп, вероятность включения каждой из которых вечером равна 0,9. Оценить с помощью неравенства Чебышева вероятность того, что число ламп, включенных в сеть вечером, отличается от своего математического ожидания не более чем на 100 (по абсолютной величине). Найти вероятность того же события, используя следствие из интегральной теоремы Муавра—Лапласа.
Вероятность того, что акции, переданные на депозит, будут востребованы, равна 0,08. Оценить с помощью неравенства Чебышева вероятность того, что среди 1000 клиентов от 70 до 90 востребуют свои акции.
Среднее значение длины детали 50см, а дисперсия - 0,1. Используя неравенство Чебышева, оценить вероятность того, что случайно взятая деталь окажется по длине не менее 49,5 и не более 50,5см. Уточнить вероятность того же события, если известно, что длина случайно взятой детали имеет нормальный закон распределения.