Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №247, стр.085


Последовательность независимых случайных величин X1, X2,..., Хn,... задана законом распределения:

0
p

Применима ли к заданной последовательности теорема Чебышева?

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Последовательность независимых случайных величин X1, X2,..., Хn,... задана законом распределения:

a -a
p

Применима ли к заданной последовательности теорема Чебышева?

Последовательность независимых случайных величин X1, X2,..., Хn,... задана законом распределения:

n+1 -n
p

а) Убедиться, что требование теоремы Чебышева о равномерной ограниченности дисперсий не выполняется; б) можно ли отсюда заключить, что к рассматриваемой последовательности теорема Чебышева неприменима?

Последовательность независимых случайных величин X1, X2,..., Хn,... задана законом распределения:

0
p

Применима ли к заданной последовательности теорема Чебышева?

Последовательность независимых случайных величин X1, X2,..., Хn,... задана законом распределения:

0
p

Применима ли к заданной последовательности теорема Чебышева?

Последовательность независимых случайных величин X1, X2,..., Хn,... задана законом распределения:

0
p

Применима ли к заданной последовательности теорема Чебышева?

Два равносильных противника играют в шахматы. Что вероятнее: а) выиграть одну партию из двух или две партии из четырех? б) выиграть не менее двух партий из четырех или не менее трех партий из пяти? Ничьи во внимание не принимаются.

Показать, что формулу Пуассона, определяющую вероятность появления k событий за время длительностью t

$P_t(k)=\frac{(\lambda t)^k\cdot e^{-\lambda t}}{k!}$

можно рассматривать как математическую модель простейшего потока событий; другими словами, показать, что формула Пуассона отражает все свойства простейшего потока.

Back to top