Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №335, стр.112


Деталь, изготовленная автоматом, считается годной, если отклонение ее контролируемого размера от проектного не превышает 10мм. Случайные отклонения контролируемого размера от проектного подчинены нормальному закону со среднеквадратическим отклонением σ=5мм и математическим ожиданием a=0. Сколько процентов годных деталей изготавливает автомат?

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Бомбардировщик, пролетевший вдоль моста, длина которого 30м и ширина , сбросил бомбы. Случайные величины X и Y (расстояния от вертикальной и горизонтальной осей симметрии моста до места падения бомбы) независимы и, распределены нормально со среднеквадратическими отклонениями, соответственно равными 6 и , и математическими ожиданиями, равными нулю. Найти: а) вероятность попадания в мост одной сброшенной бомбы; б) вероятность разрушения моста, если сброшены две бомбы, причем известно, что для разрушения моста достаточно одного попадания.

Случайная величина X распределена нормально с математическим ожиданием a=10 и среднеквадратическим отклонением σ=5. Найти интервал, симметричный относительно математического ожидания, в который с вероятностью 0,9973 попадет величина X в результате испытания.

Случайная величина X распределена нормально со среднеквадратическим отклонением σ=5мм. Найти длину интервала, симметричного относительно математического ожидания, в который с вероятностью 0,9973 попадет X в результате испытания.

Станок-автомат изготовляет валики, причем контролируется их диаметр X. Считая, что X – нормально распределенная случайная величина с математическим ожиданием a=10мм и среднеквадратическим отклонением σ=0,1мм, найти интервал, симметричный относительно математического ожидания, в котором с вероятностью 0,9973 будут заключены диаметры изготовленных валиков.

Найти параметр λ показательного распределения: а) заданного плотностью f(x)=0 при x<0, f(x)=2е-2x при x≥0; б) заданного функцией распределения f(x)=0 при x<0 и F(x)=1-е-0,4x при x≥0.

Непрерывная случайная величина X распределена по показательному закону, заданному плотностью вероятности f(x)=3е-3x при x≥0; при x<0 f(x)=0. Найти вероятность того, что в результате испытания X попадает в интервал (0,13;0,7).

Непрерывная случайная величина X распределена по показательному закону, заданному плотностью вероятности f(x)=0,04е-0,04x при x≥0; при x<0 f(x)=0. Найти вероятность того, что в результате испытания X попадает в интервал (1;2).

Back to top