Определение вероятности Задачи с решениями


  • Комбинаторика в задачах на нахождение вероятностей событий.
  • Классическое, статистическое и геометрическое определение вероятностей.

 В круг вписано шесть равных окружностей, касающихся двух соседних и внешней окружности. Найти вероятность того, что точка, наудачу брошенная в круг, не попадет ни в один из маленьких кругов.

 Из колоды в 52 карты выбираются 4 карты, причем каждая из них после определения масти и значения возвращается в колоду. Найти вероятность того, что будет выбрано три карты одного значения, а четвертая — другого.

 Два студента условились встретиться в определенном месте между 5 и 6 часами. Пришедший первым ждет другого не более 20 минут. Чему равна вероятность встречи студентов, если приход каждого из них в течение указанного часа может произойти наудачу, и моменты прихода независимы.

 Имеется пять билетов стоимостью по одному рублю, три билета по три рубля и два билета по пять рублей. Наугад берутся три билета. Найти вероятность того, что все три билета стоят семь рублей.

 В розыгрыше первенства по баскетболу участвуют 18 команд, из которых случайным образом формируются две группы по 9 команд в каждой. Среди участников соревнований имеется 5 команд экстра-класса. Найти вероятность того, что две команды экстра-класса попадут в одну из групп, а три — в другую.

 В круге проведен диаметр и перпендикулярный ему радиус, разделившие круг на 3 части. Найти вероятность того, что из трех точек, наудачу брошенных в круг, в каждой части окажется ровно по одной.

 Из колоды в 36 карт выбираются 4 карты, причем каждая из них после определения ее масти и значения возвращается в колоду. Найти вероятность того, что будут выбраны карты одного значения.

 В барабане револьвера семь гнезд, из них в пяти заложены патроны, а два оставлены пустыми. Барабан приводится во вращение, в результате чего против ствола случайным образом оказывается одно из гнезд. После этого нажимается спусковой крючок. Найти вероятность того, что, повторив такой опыт два раза подряд, мы оба раза выстрелим.

 На семи одинаковых карточках написаны соответственно числа 2, 4, 6, 7, 11, 12 и 13. Наугад берутся две карточки. Найти вероятность того, что образованная из двух полученных чисел дробь сократима.

 На отрезке длины l наудачу ставятся две точки, в результате чего этот отрезок оказывается разделенным на три части. Определить вероятность того, что из трех получившихся частей отрезка можно построить треугольник.

 Вероятность того, что изготовленная на первом станке деталь будет первосортной, равна 0,7. При изготовлении такой же детали на втором станке эта вероятность равна 0,8. На первом станке изготовлены две детали, на втором три. Найти вероятность того, что все детали первосортные.

 В круге проведен диаметр и перпендикулярный ему радиус, разделившие круг на части. Найти вероятность того, что из трех точек, наудачу брошенных в круг, в каждой части окажется ровно по одной.

 На плоскости построены 3 концентрические окружности с радиусами 2 см, 5 см и 8 см. Найти вероятность того, что монета радиуса 1 см, брошенная наудачу в круг радиуса 8 см (так, что она целиком лежит внутри круга), не пересечет двух других окружностей.

 Минное заграждение поставлено в одну линию с интервалами между минами в 90 (м). Какова вероятность того, что корабль шириной 15 (м), пересекая это заграждение под прямым углом, подорвется на мине? (Размерами мины можно пренебречь.)

Back to top