- Комбинаторика в задачах на нахождение вероятностей событий.
- Классическое, статистическое и геометрическое определение вероятностей.
В круг радиуса R вписан квадрат. Внутри круга наудачу брошены 2 точки. Найти вероятность того, что все точки попали внутрь одного из малых сегментов.
Имеется урна, в которой 3 белых и 6 черных шаров. Определить вероятность того, что при выборе из урны двух шаров они окажутся разных цветов.
На плоскость с нанесенной на ней квадратной сеткой многократно бросается монета радиуса r, в результате чего установлено, что в 40% случаев монета не пересекает ни одной стороны квадрата. Оценить размер сетки.
Бросают два кубика. Суммируют число очков, выпавших на верхних гранях кубиков. Построить множество элементарных событий и его подмножество, соответствующее событию A={сумма очков больше 6}. Найти вероятность события A. Построить подмножество, соответствующее событию Ā (дополнение A). Найти его вероятность.
Два лица договорились встретиться в определенном месте между 15 и 16ч., причем, пришедший первым ждет другого в течение 30мин., после чего уходит. Найти вероятность их встречи, если приход каждого в течение указанного часа может произойти в любое время, и моменты прихода независимы.
В розыгрыше первенства по баскетболу участвуют 18 команд, из которых случайным образом формируются две группы по 9 команд в каждой. Среди участников соревнований имеется 5 команд экстра-класса. Найти вероятность того, что все эти команды попадут в одну и ту же группу.
На окружности радиуса R наудачу поставлены три точки A, B, C. Какова вероятность того, что треугольник ABC — остроугольный?
На девяти карточках написаны цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8. Две из них вынимаются наугад и укладываются на стол в порядке появления, затем читается полученное число. Найти вероятность того, что оно будет четным.
На складе имеется 20 приборов, из них 2 неисправны. При отправке потребителю проверяется исправность приборов. Найти вероятность того, что первые 3 проверенных прибора исправны.
Какова вероятность того, что из трех взятых наудачу отрезков длины не более l можно построить треугольник?
Образуют ли данные события полную группу событий пространства элементарных событий описанного эксперимента; если да, то являются ли равновозможными; если нет — являются ли несовместными?
Эксперимент — бросание двух правильных монет; событие A — «выпало два герба», событие B — «выпало две решки»; событие C — «выпал один герб и одна решка».
Из колоды в 36 карт (4 масти по 9 карт, от шестерки до туза) наудачу и без возвращения выбираются 5 карт. Найти вероятности следующих событий:
- а) {попадется не менее двух тузов};
- б) {попадется не менее двух тузов или не менее трех королей}.
В коробке три шара - два белых и черный. Из коробки n раз с возвращением вынимается шар. Какова вероятность того, что ни разу не появится черный шар? Как себя ведет эта вероятность при бесконечно больших значениях n?
На отрезок [-1,11] наудачу и независимо друг от друга брошены две точки с координатами x и y.
а) Проверить, являются ли события {min(x,y)>5} и {x>9} независимыми; б) Проверить, являются ли события {0<y<6}, {y>5}, {3<y<7} независимыми в совокупности.
Бросают два кубика. Суммируют число очков, выпавших на верхних гранях кубиков. Построить множество элементарных событий и его подмножество, соответствующее событию A={сумма очков больше 2}. Найти вероятность события A. Построить подмножество, соответствующее событию Ā (дополнение A). Найти его вероятность.
На складе 15 мешков муки высшего сорта, 18 - первого и 7 - второго сорта. Кладовщик наудачу выбирает и выдает восемь мешков. Найти вероятности следующих событий:
- а) {попадется не менее пяти мешков муки высшего сорта};
- б) {попадется не менее пяти мешков муки высшего сорта или не менее трех мешков - первого}.
На отрезок [0,12] наудачу и независимо друг от друга брошены две точки с координатами x и y.
- а) Проверить, являются ли события {y>3} и {max(x,y)>6} независимыми.
- б) Проверить, являются ли события {1<x<7}, {x>6} и {5<x<9} независимыми в совокупности.
В кармане 5 ключей, из которых к замку подходит ровно один. Человек достает ключ из кармана n раз, возвращая всякий раз ключ обратно в карман. Какова вероятность того, что ни разу не будет вынут нужный ключ? Как себя ведет эта вероятность при бесконечно больших значениях n?
Бросаются одновременно три игральные кости. Найти вероятность того, что сумма очков на всех костях не превосходит пяти.
1. Из колоды в 36 карт вытаскивают 3 карты. Какова вероятность, что будет хотя бы одна карта бубновой масти?
2. Из колоды в 36 карт вытаскивают 4. Какова вероятность того, что окажется три семерки и один туз?
3. На складе 30 изделий первого сорта и 20 второго. Найти вероятность того, что три взятых наугад изделия - второго сорта.
Начерчены пять концентрических окружностей, радиусы которых равны соответственно kr (k=1,2,3,4,5). Круг радиуса r и два кольца с внешними радиусами 3r и 5r заштрихованы. В круге радиуса 5r наудачу выбрана точка. Определить вероятность попадания этой точки в заштрихованную область.
Из урны, содержащей 6 белых и 6 черных шаров, наугад берут 4 шара. Какова вероятность того, что белых шаров окажется больше, чем черных?
В ящике лежат 16 лампочек, из которых 6 перегоревших. Наугад берут 4 лампы. Какова вероятность того, что взятые лампы окажутся хорошими?
Наудачу бросают две кости. Найти вероятность того, что сумма очков будет не менее 9.
В коллекции марок находится 25 гашеных и 35 негашеных. Наудачу вынимаются 4 марки. Найти вероятность того, что три из них будут чистыми.
Из колоды в 52 карты выбираются случайным образом без возвращения 2 карты.
Найти вероятность того, что монета радиуса r , брошенная на бесконечную шахматную доску с клетками шириной a (a>2r), пересечет не более одной стороны клетки.
Из полного набора костей домино наугад выбираются две. Найти вероятность того, что обе они — не дубли.
На отрезке OA длины L наудачу поставлены две точки B и C. Найти вероятность того, что длина отрезка BC будет меньше расстояния от точки O до ближайшей к ней точке.
Имеется урна, в которой 4 белых, 3 красных и 7 черных шаров. Определить вероятность того, что при выборе из урны двух шаров они окажутся белыми.
Из отрезка [–1; 2] наудачу взяты два числа. Найти вероятность того, что их сумма больше единицы, а произведение меньше единицы.
Из последовательности чисел 1, 2 , …, n наудачу выбираются два числа. Какова вероятность того, что одно из них меньше k , а другое больше k , где 1 < k < n — произвольное целое число?
На отрезке OA длины L наудачу поставлены две точки B и C. Найти вероятность того, что длина отрезка BC меньше L/2.
Имеется пять билетов стоимостью по одному рублю, три билета по три рубля и два билета по пять рублей. Наугад берутся три билета. Найти вероятность того, что хотя бы два из них имеют одинаковую стоимость.
Какова вероятность того, что сумма трех наудачу взятых отрезков, длина каждого из которых не превосходит l, будет больше l?