Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №11.1


 Имеется пять билетов стоимостью по одному рублю, три билета по три рубля и два билета по пять рублей. Наугад берутся три билета. Найти вероятность того, что хотя бы два из них имеют одинаковую стоимость.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

 Какова вероятность того, что сумма трех наудачу взятых отрезков, длина каждого из которых не превосходит l, будет больше l?

 Имеется 10 одинаковых по виду урн, из которых в 9 находится по два черных и два белых шара, а в одной — пять белых и один черный шар. Из урны, взятой наудачу, извлечен белый шар. Какова вероятность того, что он извлечен из урны, содержащей пять белых шаров?

 В волейбольном матче игра происходит до тех пор, пока одна из команд не выиграет трех партий. Вероятность победы команды А в каждой партии равна 0,7. Определить вероятность того, что команда А победит со счетом 3:1.

 В каждом из трех матчей хоккейного турнира команда с вероятностью 0,2 одерживает победу, получая за нее 2 очка, с вероятностью 0,4 играет вничью, получая 1 очко, и с вероятностью 0,4 терпит поражение, не получая за это очков. Найти дисперсию общего числа набранных очков.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a.
б) Построить график функции распределения F(x).
в) Найти M(X) , D(X) и σ(X).
г) Найти вероятность того, что случайная величина X
примет значения из интервала (1,5; 3,5).

 Случайная величина X имеет нормальный закон распределения с параметрами m=1, σ=2.

Найти:

а) плотность вероятности f (x);

б) математическое ожидание и дисперсию;

в) вероятности P{0<X<3}, P{X<1,5}.

 Определить вероятность того, что выбранное наудачу целое число N при возведении в квадрат даст число, оканчивающееся единицей.

Back to top