Плотность вероятности непрерывной случайной величины X имеет вид:
Другие задачи по теории вероятности
Случайная величина X имеет нормальный закон распределения с параметрами m=1, σ=2.
Найти:
а) плотность вероятности f (x);
б) математическое ожидание и дисперсию;
в) вероятности P{0<X<3}, P{X<1,5}.
Определить вероятность того, что выбранное наудачу целое число N при возведении в квадрат даст число, оканчивающееся единицей.
В круг вписано шесть равных окружностей, касающихся двух соседних и внешней окружности. Найти вероятность того, что точка, наудачу брошенная в круг, не попадет ни в один из маленьких кругов.
В урне содержится 5 белых, 3 черных и 6 красных шаров. Шары выбираются наугад, причем белый или черный шар в урну не возвращается, а извлеченный из урны красный шар после проверки его цвета укладывается назад в урну. Найти вероятность того, что если выбрать два шара, среди них не будет белых.
Из 18 стрелков 5 попадают в мишень с вероятностью 0,8, 7 — с вероятностью 0,7, 4 — с вероятностью 0,6 и 2 — с вероятностью 0,5. Наудачу выбранный стрелок произвел выстрел, но в мишень не попал. К какой из групп вероятнее всего принадлежал этот стрелок?
В каждом из трех матчей футбольного турнира команда с вероятностью 0,2 одерживает победу, получая за нее 2 очка, с вероятностью 0,5 играет вничью, получая 1 очко, и с вероятностью 0,3 терпит поражение, не получая за это очков. Найти закон распределения и дисперсию общего числа набранных очков.
Плотность вероятности непрерывной случайной величины X имеет вид:

В каждом из трех матчей хоккейного турнира команда с вероятностью 0,2 одерживает победу, получая за нее 2 очка, с вероятностью 0,4 играет вничью, получая 1 очко, и с вероятностью 0,4 терпит поражение, не получая за это очков. Найти дисперсию общего числа набранных очков.
В волейбольном матче игра происходит до тех пор, пока одна из команд не выиграет трех партий. Вероятность победы команды А в каждой партии равна 0,7. Определить вероятность того, что команда А победит со счетом 3:1.
Имеется 10 одинаковых по виду урн, из которых в 9 находится по два черных и два белых шара, а в одной — пять белых и один черный шар. Из урны, взятой наудачу, извлечен белый шар. Какова вероятность того, что он извлечен из урны, содержащей пять белых шаров?
Какова вероятность того, что сумма трех наудачу взятых отрезков, длина каждого из которых не превосходит l, будет больше l?
Имеется пять билетов стоимостью по одному рублю, три билета по три рубля и два билета по пять рублей. Наугад берутся три билета. Найти вероятность того, что хотя бы два из них имеют одинаковую стоимость.
Найти математическое ожидание и дисперсию нормально распределенной случайной величины X, если известно, что P{X<0}=0,2 и P{Х>3}=0,15. Построить кривую распределения и найти ее максимум.
Плотность вероятности непрерывной случайной величины X имеет вид:
![]()
Загружаем...