Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №12.4


 Из 18 стрелков 5 попадают в мишень с вероятностью 0,8, 7 — с вероятностью 0,7, 4 — с вероятностью 0,6 и 2 — с вероятностью 0,5. Наудачу выбранный стрелок произвел выстрел, но в мишень не попал. К какой из групп вероятнее всего принадлежал этот стрелок?

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

 В каждом из трех матчей футбольного турнира команда с вероятностью 0,2 одерживает победу, получая за нее 2 очка, с вероятностью 0,5 играет вничью, получая 1 очко, и с вероятностью 0,3 терпит поражение, не получая за это очков. Найти закон распределения и дисперсию общего числа набранных очков.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a.
б) Построить график функции распределения F(x).
в) Найти M(X) , D(X) и σ(X).
г) Найти вероятность того, что случайная величина X примет значения из интервала (2; 3).

 Случайная величина X имеет нормальный закон распределения с параметрами m=0, σ=2.

Найти вероятность того, что эта случайная величина принимает значение:

а) в интервале (–1; 2);

б) меньшее –0,5;

в) отличающееся от своего среднего значения по абсолютной величине не больше, чем на 1.

 Из колоды в 52 карты выбираются 4 карты, причем каждая из них после определения масти и значения возвращается в колоду. Найти вероятность того, что будет выбрано три карты одного значения, а четвертая — другого.

 Наудачу взяты два числа x и y (0<x<4; 0<y<4). Найти вероятность того, что xy<4, а x/y<2.

 Прибор может собираться из высококачественных деталей и из деталей обычного качества (из высококачественных деталей собирается 30 % приборов). Вероятность безотказной работы за время t для приборов первого и второго типа равна соответственно 0,96 и 0,71. Прибор испытывался в течение времени t и работал безотказно. Найти вероятность того, что он собран из высококачественных деталей.

 В партии изделий 90 исправных и 10 бракованных. Найти вероятность того, что среди 10 проданных изделий ровно одно бракованное.

 В урне содержится 5 белых, 3 черных и 6 красных шаров. Шары выбираются наугад, причем белый или черный шар в урну не возвращается, а извлеченный из урны красный шар после проверки его цвета укладывается назад в урну. Найти вероятность того, что если выбрать два шара, среди них не будет белых.

 В круг вписано шесть равных окружностей, касающихся двух соседних и внешней окружности. Найти вероятность того, что точка, наудачу брошенная в круг, не попадет ни в один из маленьких кругов.

 Определить вероятность того, что выбранное наудачу целое число N при возведении в квадрат даст число, оканчивающееся единицей.

 Случайная величина X имеет нормальный закон распределения с параметрами m=1, σ=2.

Найти:

а) плотность вероятности f (x);

б) математическое ожидание и дисперсию;

в) вероятности P{0<X<3}, P{X<1,5}.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a.
б) Построить график функции распределения F(x).
в) Найти M(X) , D(X) и σ(X).
г) Найти вероятность того, что случайная величина X
примет значения из интервала (1,5; 3,5).

 В каждом из трех матчей хоккейного турнира команда с вероятностью 0,2 одерживает победу, получая за нее 2 очка, с вероятностью 0,4 играет вничью, получая 1 очко, и с вероятностью 0,4 терпит поражение, не получая за это очков. Найти дисперсию общего числа набранных очков.

 В волейбольном матче игра происходит до тех пор, пока одна из команд не выиграет трех партий. Вероятность победы команды А в каждой партии равна 0,7. Определить вероятность того, что команда А победит со счетом 3:1.

Back to top