В партии изделий 90 исправных и 10 бракованных. Найти вероятность того, что среди 10 проданных изделий ровно одно бракованное.
Другие задачи по теории вероятности
В каждом из двух таймов футбольного матча обе команды вместе забивают три мяча с вероятностью 0,1, два мяча — с вероятностью 0,3, один мяч — с вероятностью 0,2 и с вероятностью 0,4 не забивают мячей. Найти закон распределения и дисперсию общего числа забитых в матче мячей.
Плотность вероятности непрерывной случайной величины X имеет вид:

Случайная величина X имеет нормальный закон распределения с параметрами m=-10, σ =3 . Заданы точки –17, –13, –7, –1, 2 на числовой оси, разделяющие ее на шесть интервалов. Найти вероятности того, что случайная величина X принимает значения на этих интервалах.
Из колоды в 32 карты выбираются наудачу без возвращения 2 карты. Найти вероятность того, что будут выбраны карты одного значения.
Наудачу взяты два числа x и y (0< x< 5, 0< y< 5). Найти вероятность того, что x+y<5, а xy>2,25.
Имеется три ящика, в первом из которых 6 стандартных и 4 бракованных детали, во втором — 5 стандартных и 7 бракованных, а в третьем — 8 стандартных и 8 бракованных. Определить вероятность того, что если из каждого ящика выбрать по детали, то все они будут стандартными.
Попадание случайной точки в любое место области S равновозможно, а область S состоит из четырех частей, составляющих соответственно 50, 30, 12 и 8 % всей области. При испытании имело место событие A, которое происходит только при попадании точки в одну из этих частей с вероятностями соответственно 0,01, 0,05, 0,2 и 0,5. В какую из частей области S вероятнее всего произошло попадание?
Прибор может собираться из высококачественных деталей и из деталей обычного качества (из высококачественных деталей собирается 30 % приборов). Вероятность безотказной работы за время t для приборов первого и второго типа равна соответственно 0,96 и 0,71. Прибор испытывался в течение времени t и работал безотказно. Найти вероятность того, что он собран из высококачественных деталей.
Наудачу взяты два числа x и y (0<x<4; 0<y<4). Найти вероятность того, что xy<4, а x/y<2.
Из колоды в 52 карты выбираются 4 карты, причем каждая из них после определения масти и значения возвращается в колоду. Найти вероятность того, что будет выбрано три карты одного значения, а четвертая — другого.
Случайная величина X имеет нормальный закон распределения с параметрами m=0, σ=2.
Найти вероятность того, что эта случайная величина принимает значение:
а) в интервале (–1; 2);
б) меньшее –0,5;
в) отличающееся от своего среднего значения по абсолютной величине не больше, чем на 1.
Плотность вероятности непрерывной случайной величины X имеет вид:

В каждом из трех матчей футбольного турнира команда с вероятностью 0,2 одерживает победу, получая за нее 2 очка, с вероятностью 0,5 играет вничью, получая 1 очко, и с вероятностью 0,3 терпит поражение, не получая за это очков. Найти закон распределения и дисперсию общего числа набранных очков.
Из 18 стрелков 5 попадают в мишень с вероятностью 0,8, 7 — с вероятностью 0,7, 4 — с вероятностью 0,6 и 2 — с вероятностью 0,5. Наудачу выбранный стрелок произвел выстрел, но в мишень не попал. К какой из групп вероятнее всего принадлежал этот стрелок?
Загружаем...