Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №14.3


 Имеется три ящика, в первом из которых 6 стандартных и 4 бракованных детали, во втором — 5 стандартных и 7 бракованных, а в третьем — 8 стандартных и 8 бракованных. Определить вероятность того, что если из каждого ящика выбрать по детали, то все они будут стандартными.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

 Попадание случайной точки в любое место области S равновозможно, а область S состоит из четырех частей, составляющих соответственно 50, 30, 12 и 8 % всей области. При испытании имело место событие A, которое происходит только при попадании точки в одну из этих частей с вероятностями соответственно 0,01, 0,05, 0,2 и 0,5. В какую из частей области S вероятнее всего произошло попадание?

 Студент знает 15 из 25 экзаменационных вопросов. В билете 3 вопроса. Найти закон распределения и математическое ожидание случайной величины X — числа вопросов, на которые студент готов ответить.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a.
б) Построить график функции распределения F(x).
в) Найти M(X) , D(X) и σ(X).
г) Найти вероятность того, что случайная величина X примет значения из интервала (-0,4; 1,6).

 Считается, что отклонение длины изготавливаемых деталей от стандарта является случайной величиной, распределенной по нормальному закону. Если стандартная длина равна m=40 см и среднее квадратическое отклонение равно σ = 0,4 см, то какую точность длины изделия можно гарантировать с вероятностью 0,8?

 Из полного набора костей домино наугад выбираются две. Определить вероятность того, что на обеих костях нет цифр 3 и 5.

 На отрезок OA длины L наудачу брошена точка B. Найти вероятность того, что меньший из отрезков OB и BA будет иметь длину, меньшую, чем L/3

 Игрок A поочередно играет с игроками B и C по две партии. Вероятности выигрыша первой партии для B и C равны 0,1 и 0,2 соответственно, вероятность выиграть во второй партии для B равна 0,3, для C — 0,4. Определить вероятность того, что первым выиграет B.

Back to top