Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №11.3


 Имеется 10 одинаковых по виду урн, из которых в 9 находится по два черных и два белых шара, а в одной — пять белых и один черный шар. Из урны, взятой наудачу, извлечен белый шар. Какова вероятность того, что он извлечен из урны, содержащей пять белых шаров?

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

 В волейбольном матче игра происходит до тех пор, пока одна из команд не выиграет трех партий. Вероятность победы команды А в каждой партии равна 0,7. Определить вероятность того, что команда А победит со счетом 3:1.

 В каждом из трех матчей хоккейного турнира команда с вероятностью 0,2 одерживает победу, получая за нее 2 очка, с вероятностью 0,4 играет вничью, получая 1 очко, и с вероятностью 0,4 терпит поражение, не получая за это очков. Найти дисперсию общего числа набранных очков.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a.
б) Построить график функции распределения F(x).
в) Найти M(X) , D(X) и σ(X).
г) Найти вероятность того, что случайная величина X
примет значения из интервала (1,5; 3,5).

 Случайная величина X имеет нормальный закон распределения с параметрами m=1, σ=2.

Найти:

а) плотность вероятности f (x);

б) математическое ожидание и дисперсию;

в) вероятности P{0<X<3}, P{X<1,5}.

 Определить вероятность того, что выбранное наудачу целое число N при возведении в квадрат даст число, оканчивающееся единицей.

 В круг вписано шесть равных окружностей, касающихся двух соседних и внешней окружности. Найти вероятность того, что точка, наудачу брошенная в круг, не попадет ни в один из маленьких кругов.

 В урне содержится 5 белых, 3 черных и 6 красных шаров. Шары выбираются наугад, причем белый или черный шар в урну не возвращается, а извлеченный из урны красный шар после проверки его цвета укладывается назад в урну. Найти вероятность того, что если выбрать два шара, среди них не будет белых.

Back to top