Бросаются одновременно три игральные кости. Найти вероятность того, что сумма очков на всех костях не превосходит пяти.
Другие задачи по теории вероятности
Начерчены пять концентрических окружностей, радиусы которых равны соответственно kr (k=1,2,3,4,5). Круг радиуса r и два кольца с внешними радиусами 3r и 5r заштрихованы. В круге радиуса 5r наудачу выбрана точка. Определить вероятность попадания этой точки в заштрихованную область.
В читальном зале есть 10 учебников по теории вероятностей, из них 4 в переплете. Библиотекарь взял наудачу два учебника. Найти вероятность того, что только один учебник в переплете.
Характеристика материала, из которого изготовлена продукция, с вероятностями 0,09, 0,16, 0,25, 0,25, 0,16 и 0,09 может находиться в шести различных интервалах. В зависимости от свойств материала вероятности получения первосортной продукции равны соответственно 0,2, 0,3, 0,4, 0,4, 0,3 и 0,2. Определить вероятность получения первосортной продукции.
Стрелок производит 7 выстрелов по различным мишеням, причем выстрелы по каждой мишени производятся до первого попадания в нее, после чего выстрелы производятся по следующей мишени. Вероятность попадания при каждом выстреле равна 0,8. Найти закон распределения случайной величины X — числа пораженных мишеней.
В каждом из трех периодов хоккейного матча команда забивает две шайбы с вероятностью 0,4, одну шайбу — с вероятностью 0,3 и не забивает шайб с вероятностью 0,3. Определить дисперсию количества шайб, забитых в матче.
Плотность вероятности непрерывной случайной величины X имеет вид:![]()
![]()
Случайная величина X имеет нормальный закон распределения. Известно, что P{X>2}=0,5, P{X<3}=0,975.
Найти:
а) математическое ожидание и дисперсию;
б) вероятность P{1 < X < 3}.
Случайная величина X имеет нормальный закон распределения, причем M(X)=1,2, D(X)=2. Найти P{|X-1,2|>2,5√2} и P{|X-1,2|<1}.
Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра а. б) Построить график функции распределения F(x). в) Найти M(X), D(X) и σ(X). г) Найти вероятность того, что случайная величина X примет значения из интервала (2; 3).
Найти дисперсию дискретной случайной величины X - числа появлений события А в пяти независимых испытаниях, если вероятность появления событий А в каждом испытании равна 0,3.
В урне 5 белых и 3 черных шара. Из нее наудачу вынимают 3 шара. Найти закон распределения случайного числа белых шаров среди отобранных.
Два баскетболиста делают по три броска мячом в корзину. Вероятности попадания мяча в корзину при каждом броске равны соответственно 0,6 и 0,7. Найти вероятность того, что у обоих будет одинаковое количество попаданий.
Батарея из трех орудий произвела залп, причем два снаряда попали в цель. Найти вероятность того, что первое орудие дало попадание, если вероятности попадания в цель первым, вторым и третьим орудиями соответственно равны 0,4, 0,3, 0,5.
Какова вероятность того, что из трех взятых наудачу отрезков длины не более l можно построить треугольник?
Загружаем...