Начерчены пять концентрических окружностей, радиусы которых равны соответственно kr (k=1,2,3,4,5). Круг радиуса r и два кольца с внешними радиусами 3r и 5r заштрихованы. В круге радиуса 5r наудачу выбрана точка. Определить вероятность попадания этой точки в заштрихованную область.
Другие задачи по теории вероятности
В читальном зале есть 10 учебников по теории вероятностей, из них 4 в переплете. Библиотекарь взял наудачу два учебника. Найти вероятность того, что только один учебник в переплете.
Характеристика материала, из которого изготовлена продукция, с вероятностями 0,09, 0,16, 0,25, 0,25, 0,16 и 0,09 может находиться в шести различных интервалах. В зависимости от свойств материала вероятности получения первосортной продукции равны соответственно 0,2, 0,3, 0,4, 0,4, 0,3 и 0,2. Определить вероятность получения первосортной продукции.
Стрелок производит 7 выстрелов по различным мишеням, причем выстрелы по каждой мишени производятся до первого попадания в нее, после чего выстрелы производятся по следующей мишени. Вероятность попадания при каждом выстреле равна 0,8. Найти закон распределения случайной величины X — числа пораженных мишеней.
В каждом из трех периодов хоккейного матча команда забивает две шайбы с вероятностью 0,4, одну шайбу — с вероятностью 0,3 и не забивает шайб с вероятностью 0,3. Определить дисперсию количества шайб, забитых в матче.
Плотность вероятности непрерывной случайной величины X имеет вид:
Случайная величина X имеет нормальный закон распределения. Известно, что P{X>2}=0,5, P{X<3}=0,975.
Найти:
а) математическое ожидание и дисперсию;
б) вероятность P{1 < X < 3}.
Из колоды в 52 карты выбираются случайным образом без возвращения 2 карты.