Плотность вероятности непрерывной случайной величины X имеет вид:
а) Найти значение параметра а. б) Построить график функции распределения F(x). в) Найти M(X), D(X) и σ(X). г) Найти вероятность того, что случайная величина X примет значения из интервала (2; 3).
Другие задачи по теории вероятности
Случайная величина X имеет нормальный закон распределения, причем M(X)=1,2, D(X)=2. Найти P{|X-1,2|>2,5√2} и P{|X-1,2|<1}.
Бросаются одновременно три игральные кости. Найти вероятность того, что сумма очков на всех костях не превосходит пяти.
Начерчены пять концентрических окружностей, радиусы которых равны соответственно kr (k=1,2,3,4,5). Круг радиуса r и два кольца с внешними радиусами 3r и 5r заштрихованы. В круге радиуса 5r наудачу выбрана точка. Определить вероятность попадания этой точки в заштрихованную область.
В читальном зале есть 10 учебников по теории вероятностей, из них 4 в переплете. Библиотекарь взял наудачу два учебника. Найти вероятность того, что только один учебник в переплете.
Характеристика материала, из которого изготовлена продукция, с вероятностями 0,09, 0,16, 0,25, 0,25, 0,16 и 0,09 может находиться в шести различных интервалах. В зависимости от свойств материала вероятности получения первосортной продукции равны соответственно 0,2, 0,3, 0,4, 0,4, 0,3 и 0,2. Определить вероятность получения первосортной продукции.
Стрелок производит 7 выстрелов по различным мишеням, причем выстрелы по каждой мишени производятся до первого попадания в нее, после чего выстрелы производятся по следующей мишени. Вероятность попадания при каждом выстреле равна 0,8. Найти закон распределения случайной величины X — числа пораженных мишеней.
В каждом из трех периодов хоккейного матча команда забивает две шайбы с вероятностью 0,4, одну шайбу — с вероятностью 0,3 и не забивает шайб с вероятностью 0,3. Определить дисперсию количества шайб, забитых в матче.