Два баскетболиста делают по три броска мячом в корзину. Вероятности попадания мяча в корзину при каждом броске равны соответственно 0,6 и 0,7. Найти вероятность того, что у обоих будет одинаковое количество попаданий.
Другие задачи по теории вероятности
В урне 5 белых и 3 черных шара. Из нее наудачу вынимают 3 шара. Найти закон распределения случайного числа белых шаров среди отобранных.
Найти дисперсию дискретной случайной величины X - числа появлений события А в пяти независимых испытаниях, если вероятность появления событий А в каждом испытании равна 0,3.
Плотность вероятности непрерывной случайной величины X имеет вид:
а) Найти значение параметра а. б) Построить график функции распределения F(x). в) Найти M(X), D(X) и σ(X). г) Найти вероятность того, что случайная величина X примет значения из интервала (2; 3).
Случайная величина X имеет нормальный закон распределения, причем M(X)=1,2, D(X)=2. Найти P{|X-1,2|>2,5√2} и P{|X-1,2|<1}.
Бросаются одновременно три игральные кости. Найти вероятность того, что сумма очков на всех костях не превосходит пяти.
Начерчены пять концентрических окружностей, радиусы которых равны соответственно kr (k=1,2,3,4,5). Круг радиуса r и два кольца с внешними радиусами 3r и 5r заштрихованы. В круге радиуса 5r наудачу выбрана точка. Определить вероятность попадания этой точки в заштрихованную область.
В читальном зале есть 10 учебников по теории вероятностей, из них 4 в переплете. Библиотекарь взял наудачу два учебника. Найти вероятность того, что только один учебник в переплете.