В урне 5 белых и 3 черных шара. Из нее наудачу вынимают 3 шара. Найти закон распределения случайного числа белых шаров среди отобранных.
Другие задачи по теории вероятности
Найти дисперсию дискретной случайной величины X - числа появлений события А в пяти независимых испытаниях, если вероятность появления событий А в каждом испытании равна 0,3.
Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра а. б) Построить график функции распределения F(x). в) Найти M(X), D(X) и σ(X). г) Найти вероятность того, что случайная величина X примет значения из интервала (2; 3).
Случайная величина X имеет нормальный закон распределения, причем M(X)=1,2, D(X)=2. Найти P{|X-1,2|>2,5√2} и P{|X-1,2|<1}.
Бросаются одновременно три игральные кости. Найти вероятность того, что сумма очков на всех костях не превосходит пяти.
Начерчены пять концентрических окружностей, радиусы которых равны соответственно kr (k=1,2,3,4,5). Круг радиуса r и два кольца с внешними радиусами 3r и 5r заштрихованы. В круге радиуса 5r наудачу выбрана точка. Определить вероятность попадания этой точки в заштрихованную область.
В читальном зале есть 10 учебников по теории вероятностей, из них 4 в переплете. Библиотекарь взял наудачу два учебника. Найти вероятность того, что только один учебник в переплете.
Характеристика материала, из которого изготовлена продукция, с вероятностями 0,09, 0,16, 0,25, 0,25, 0,16 и 0,09 может находиться в шести различных интервалах. В зависимости от свойств материала вероятности получения первосортной продукции равны соответственно 0,2, 0,3, 0,4, 0,4, 0,3 и 0,2. Определить вероятность получения первосортной продукции.
Два баскетболиста делают по три броска мячом в корзину. Вероятности попадания мяча в корзину при каждом броске равны соответственно 0,6 и 0,7. Найти вероятность того, что у обоих будет одинаковое количество попаданий.
Батарея из трех орудий произвела залп, причем два снаряда попали в цель. Найти вероятность того, что первое орудие дало попадание, если вероятности попадания в цель первым, вторым и третьим орудиями соответственно равны 0,4, 0,3, 0,5.
Какова вероятность того, что из трех взятых наудачу отрезков длины не более l можно построить треугольник?
На девяти карточках написаны цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8. Две из них вынимаются наугад и укладываются на стол в порядке появления, затем читается полученное число. Найти вероятность того, что оно будет четным.
Случайная величина X имеет нормальный закон распределения с параметрами m=2, σ=2 . Найти: а) плотность вероятности f(x); б) математическое ожидание и дисперсию; в) вероятности P{1<X<4}, P{X<2,5}.
Плотность вероятности непрерывной случайной величины X имеет вид:
![]()
а) Найти значение параметра а. б) Построить график функции распределения F(x). в) Найти M(X), D(X) и σ(X). г) Найти вероятность того, что случайная величина X примет значения из интервала (5; 6).
Во время эстафетных соревнований по биатлону спортсмену требуется поразить на огневом рубеже 5 мишеней, имея для этого 7 патронов. Вероятность попадания в мишень при одном выстреле составляет 0,8. Найти дисперсию случайной величины X — числа пораженных мишеней.
Загружаем...