Свободный источник №1.1.0043


Из урны, содержащей 6 белых и 6 черных шаров, наугад берут 4 шара. Какова вероятность того, что белых шаров окажется больше, чем черных?

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

В ящике лежат 16 лампочек, из которых 6 перегоревших. Наугад берут 4 лампы. Какова вероятность того, что взятые лампы окажутся хорошими?

В вычислительной лаборатории 40% микрокалькуляторов и 60% дисплеев. Во время расчета 90% микрокалькуляторов и 80% дисплеев работают безотказно. а) Найти вероятность того, что наугад взятая вычислительная машина проработает безотказно во время расчета; б) выбранная машина проработала безотказно по время расчета. К какому типу вероятнее всего она принадлежит?

Для участия в студенческих отборочных спортивных соревнованиях выбрали 4 первокурсников, 6 второкурсников, 5 учащихся третьего курса. Для студента 1 курса вероятность попасть в сборную института, равна 0,9, для студента 2 курса – 0,8, для студента 3 курса – 0,7. Найти вероятность того, что случайно выбранный студент попадет в сборную института. Какова вероятность того, что это был учащийся 2 курса?

В первой урне 11 белых и 9 черных шаров, во второй урне 6 белых и 2 черных шара. Из первой урны во вторую переложили 2 шара, а затем из второй урны вынули один шар. Найти вероятность того, что этот шар белый.

Плотность распределения вероятностной случайной величины X имеет вид, указанный на рисунке, то есть определяется четырьмя числами A, B, M, C, три из которых заданы.

Требуется найти четвертое (неизвестное) число; математическое ожидание; дисперсию случайной величины X; функцию распределения случайной величины X и построить ее график.

Отдел технического контроля проверяет партию из 4 деталей. Вероятность того, что деталь стандартная, равна 0,65. Найти наивероятнейшее число деталей, которые будут признаны стандартными, вероятность 2 стандартных деталей.

Момент прихода автобуса к остановке распределен равновероятно в интервале от 0 до 5 минут. Определите вероятность того, что время ожидания автобуса будет находиться в интервале от 1 до 3 минут.

В результате проверки n контейнеров установлено, что число изделий Х, поврежденных при транспортировке и разгрузке, имеет эмпирическое распределение, сведенное в таблицу, где xi - количество поврежденных изделий в одном контейнере, ni - частота этого события, т.е. число контейнеров, содержащих xi поврежденных изделий. Требуется при уровне значимости проверить гипотезу о том, что случайная величина Х распределена по закону Пуассона. Использовать критерий согласия Пирсона: n=350, α=0,02.

Заданы среднее квадратическое отклонение σ нормально распределенной случайной величины Х, выборочная средняя xB и объем выборки n. Найти доверительный интервал для оценки неизвестного математического ожидания a с заданной надежностью γ=0,95. xB=25,75; n=121; σ=11.

Заданы математическое ожидание a и среднее квадратическое отклонение σ нормально распределенной случайной величины Х. Написать плотность распределения вероятностей и схематично построить ее график. Найти вероятность того, что Х примет значение из интервала (α, β). a=9, σ=3, α=8, β=18.

Задана непрерывная случайная величина Х функцией распределения F(x). Требуется: 1) Найти плотность распределения вероятностей f(x); 2) Схематично построить графики f(x) и F(x); 3) Найти математическое ожидание и дисперсию Х.

Закон распределения дискретной случайной величины Х задан в виде таблицы, в первой строке которой указаны возможные значения xi случайной величины Х, а во второй строке – вероятности pi возможных значений xi. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х.

Устройство состоит из четырех элементов, работающих независимо. Вероятности безотказной работы в течение месяца соответственно равны: 0,6 для первого элемента, 0,8 для второго, 0,7 для третьего и 0,9 для четвертого. Найти вероятность того, что в течение месяца будут безотказно работать: а) все четыре элемента; б) только один элемент; в) не менее двух элементов.

В телевизионном ателье имеется 3 кинескопа. Вероятности того, что кинескоп выдержит гарантийный срок службы, соответственно равны 0,8, 0,9, 0,85. Найти вероятность того, что взятый наудачу кинескоп выдержит гарантийный срок службы.

Back to top