В результате проверки n контейнеров установлено, что число изделий Х, поврежденных при транспортировке и разгрузке, имеет эмпирическое распределение, сведенное в таблицу, где xi - количество поврежденных изделий в одном контейнере, ni - частота этого события, т.е. число контейнеров, содержащих xi поврежденных изделий. Требуется при уровне значимости проверить гипотезу о том, что случайная величина Х распределена по закону Пуассона. Использовать критерий согласия Пирсона: n=350, α=0,02.
Другие задачи по теории вероятности
Из урны, содержащей 6 белых и 6 черных шаров, наугад берут 4 шара. Какова вероятность того, что белых шаров окажется больше, чем черных?
В ящике лежат 16 лампочек, из которых 6 перегоревших. Наугад берут 4 лампы. Какова вероятность того, что взятые лампы окажутся хорошими?
В вычислительной лаборатории 40% микрокалькуляторов и 60% дисплеев. Во время расчета 90% микрокалькуляторов и 80% дисплеев работают безотказно. а) Найти вероятность того, что наугад взятая вычислительная машина проработает безотказно во время расчета; б) выбранная машина проработала безотказно по время расчета. К какому типу вероятнее всего она принадлежит?
Для участия в студенческих отборочных спортивных соревнованиях выбрали 4 первокурсников, 6 второкурсников, 5 учащихся третьего курса. Для студента 1 курса вероятность попасть в сборную института, равна 0,9, для студента 2 курса – 0,8, для студента 3 курса – 0,7. Найти вероятность того, что случайно выбранный студент попадет в сборную института. Какова вероятность того, что это был учащийся 2 курса?
В первой урне 11 белых и 9 черных шаров, во второй урне 6 белых и 2 черных шара. Из первой урны во вторую переложили 2 шара, а затем из второй урны вынули один шар. Найти вероятность того, что этот шар белый.
Плотность распределения вероятностной случайной величины X имеет вид, указанный на рисунке, то есть определяется четырьмя числами A, B, M, C, три из которых заданы.
Требуется найти четвертое (неизвестное) число; математическое ожидание; дисперсию случайной величины X; функцию распределения случайной величины X и построить ее график.
Отдел технического контроля проверяет партию из 4 деталей. Вероятность того, что деталь стандартная, равна 0,65. Найти наивероятнейшее число деталей, которые будут признаны стандартными, вероятность 2 стандартных деталей.