В вычислительной лаборатории 40% микрокалькуляторов и 60% дисплеев. Во время расчета 90% микрокалькуляторов и 80% дисплеев работают безотказно. а) Найти вероятность того, что наугад взятая вычислительная машина проработает безотказно во время расчета; б) выбранная машина проработала безотказно по время расчета. К какому типу вероятнее всего она принадлежит?
Другие задачи по теории вероятности
Для участия в студенческих отборочных спортивных соревнованиях выбрали 4 первокурсников, 6 второкурсников, 5 учащихся третьего курса. Для студента 1 курса вероятность попасть в сборную института, равна 0,9, для студента 2 курса – 0,8, для студента 3 курса – 0,7. Найти вероятность того, что случайно выбранный студент попадет в сборную института. Какова вероятность того, что это был учащийся 2 курса?
В первой урне 11 белых и 9 черных шаров, во второй урне 6 белых и 2 черных шара. Из первой урны во вторую переложили 2 шара, а затем из второй урны вынули один шар. Найти вероятность того, что этот шар белый.
Плотность распределения вероятностной случайной величины X имеет вид, указанный на рисунке, то есть определяется четырьмя числами A, B, M, C, три из которых заданы.
Требуется найти четвертое (неизвестное) число; математическое ожидание; дисперсию случайной величины X; функцию распределения случайной величины X и построить ее график.
Отдел технического контроля проверяет партию из 4 деталей. Вероятность того, что деталь стандартная, равна 0,65. Найти наивероятнейшее число деталей, которые будут признаны стандартными, вероятность 2 стандартных деталей.
Момент прихода автобуса к остановке распределен равновероятно в интервале от 0 до 5 минут. Определите вероятность того, что время ожидания автобуса будет находиться в интервале от 1 до 3 минут.
Заданы математическое ожидание m и среднее квадратическое отклонение σ нормально распределенной случайной величины X. Найти: 1) вероятность того, что X примет значение, принадлежащее интервалу (α;β); 2) вероятность того, что абсолютная величина отклонения |X-m| окажется меньше δ, где m=12, σ=5, α=17, β=22, δ=15.
Посев производится семенами пшеницы 4 сортов, перемешанных между собой. При этом зерна первого сорта составляют 12% от общего количества, зерна второго сорта – 9%, третьего сорта – 14%, четвертого сорта – 65%. Вероятность того, что из зерна вырастет колос, содержащий не менее 50 зерен для пшеницы первого сорта составляет 0,25, для пшеницы второго сорта – 0,08, для пшеницы третьего сорта – 0,04, для четвертого сорта – 0. Найти вероятность того, что из взятого наугад зерна вырастет колос, содержащий не менее 50 зерен.