Устройство состоит из четырех элементов, работающих независимо. Вероятности безотказной работы в течение месяца соответственно равны: 0,6 для первого элемента, 0,8 для второго, 0,7 для третьего и 0,9 для четвертого. Найти вероятность того, что в течение месяца будут безотказно работать: а) все четыре элемента; б) только один элемент; в) не менее двух элементов.
Другие задачи по теории вероятности
Закон распределения дискретной случайной величины Х задан в виде таблицы, в первой строке которой указаны возможные значения xi случайной величины Х, а во второй строке – вероятности pi возможных значений xi. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х.
Задана непрерывная случайная величина Х функцией распределения F(x). Требуется: 1) Найти плотность распределения вероятностей f(x); 2) Схематично построить графики f(x) и F(x); 3) Найти математическое ожидание и дисперсию Х.
Заданы математическое ожидание a и среднее квадратическое отклонение σ нормально распределенной случайной величины Х. Написать плотность распределения вероятностей и схематично построить ее график. Найти вероятность того, что Х примет значение из интервала (α, β). a=9, σ=3, α=8, β=18.
Заданы среднее квадратическое отклонение σ нормально распределенной случайной величины Х, выборочная средняя xB и объем выборки n. Найти доверительный интервал для оценки неизвестного математического ожидания a с заданной надежностью γ=0,95. xB=25,75; n=121; σ=11.
В результате проверки n контейнеров установлено, что число изделий Х, поврежденных при транспортировке и разгрузке, имеет эмпирическое распределение, сведенное в таблицу, где xi - количество поврежденных изделий в одном контейнере, ni - частота этого события, т.е. число контейнеров, содержащих xi поврежденных изделий. Требуется при уровне значимости проверить гипотезу о том, что случайная величина Х распределена по закону Пуассона. Использовать критерий согласия Пирсона: n=350, α=0,02.
Из урны, содержащей 6 белых и 6 черных шаров, наугад берут 4 шара. Какова вероятность того, что белых шаров окажется больше, чем черных?
В ящике лежат 16 лампочек, из которых 6 перегоревших. Наугад берут 4 лампы. Какова вероятность того, что взятые лампы окажутся хорошими?