Определить вероятность того, что выбранное наудачу целое число N при возведении в четвертую степень даст число, заканчивающееся единицей.
Другие задачи по теории вероятности
На отрезке длины l наудачу выбраны две точки. Какова вероятность того, что расстояние между ними меньше l/4?
Орудие осуществляет стрельбу по цели, для поражения которой необходимо попасть в нее дважды. Вероятность попадания в цель при первом выстреле равна 0,2; в дальнейшем она не меняется при промахах, но после первого попадания вероятность промаха при дальнейших выстрелах уменьшается вдвое. Боекомплект составляет 8 снарядов. Найти вероятность того, что цель будет повреждена, но не поражена.
Третья часть одной из трех партий деталей является второсортной, остальные детали во всех партиях первого сорта. Деталь, взятая из одной партии, оказалась первосортной. Определить вероятность того, что деталь была взята из партии, имеющей второсортные детали.
Во время эстафетных соревнований по биатлону спортсмену требуется поразить на огневом рубеже 5 мишеней, имея для этого 7 патронов. Вероятность попадания в мишень при выстреле составляет 0,9. Найти вероятность того, что непораженной останется одна мишень.
В каждом из трех матчей футбольного турнира команда с вероятностью 0,6 одерживает победу, получая за нее 2 очка, с вероятностью 0,3 играет вничью, получая 1 очко, и с вероятностью 0,1 терпит поражение, не получая за это очков. Найти закон распределения общего числа набранных очков.
Случайная величина X имеет нормальный закон распределения с параметрами m=2, σ=4.
Найти:
а) вероятность P{-5 < X < 30};
б) интервал, симметрично расположенный относительно среднего значения, в который с вероятностью g = 0,9 попадет X.
Найти вероятность того, что дни рождения 12 человек придутся на разные месяцы года.