Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №18.3


 Имеется три урны, в первой из которых 3 белых и 6 черных шаров, во второй — 4 белых и 4 черных и в третьей — 7 белых и 3 черных. Определить вероятность того, что при выборе из каждой урны по одному шару все они будут белыми.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

 Для поражения трех целей орудие может произвести не более 8 выстрелов. Вероятность поражения цели при любом выстреле равна 0,3. Определить вероятность того, что будут израсходованы все снаряды, и все цели будут поражены.

 В каждом из двух таймов футбольного матча обе команды вместе забивают три мяча с вероятностью 0,2, два мяча — с вероятностью 0,1, один мяч — с вероятностью 0,3 и с вероятностью 0,4 не забивают мячей. Найти закон распределения и дисперсию общего числа забитых в матче мячей.

 Деталь, изготовленная автоматом, считается годной, если отклонение ее размера от проектного не превышает 7 мм. Случайные отклонения размера детали от проектного имеют нормальный закон распределения с параметрами m = 0 и σ = 4 мм. Сколько процентов годных деталей изготавливает автомат?

 Определить вероятность того, что выбранное наудачу целое число N при возведении в четвертую степень даст число, заканчивающееся единицей.

 На отрезке длины l наудачу выбраны две точки. Какова вероятность того, что расстояние между ними меньше l/4?

 Орудие осуществляет стрельбу по цели, для поражения которой необходимо попасть в нее дважды. Вероятность попадания в цель при первом выстреле равна 0,2; в дальнейшем она не меняется при промахах, но после первого попадания вероятность промаха при дальнейших выстрелах уменьшается вдвое. Боекомплект составляет 8 снарядов. Найти вероятность того, что цель будет повреждена, но не поражена.

 Третья часть одной из трех партий деталей является второсортной, остальные детали во всех партиях первого сорта. Деталь, взятая из одной партии, оказалась первосортной. Определить вероятность того, что деталь была взята из партии, имеющей второсортные детали.

 Имеется пять билетов стоимостью по одному рублю, три билета по три рубля и два билета по пять рублей. Наугад берутся три билета. Найти вероятность того, что все три билета стоят семь рублей.

 Случайная величина X имеет нормальный закон распределения. Известно, что M(X)=-1; D(X)=2.

Найти:

а) плотность вероятности случайной величины X и ее значения в точках x =-2, x = 0, x = 1;

б) вероятности P{-3 < X < -1}, P{X > 0}.

 В партии арбузов 10% недозрелых. Найти закон распределения и дисперсию случайного числа недозрелых арбузов среди трех купленных.

 Из полного набора костей домино наугад извлекается кость, затем она возвращается обратно и извлекается еще одна кость. Найти вероятность того, что на обеих костях нет цифр 4 и 3.

 Два студента условились встретиться в определенном месте между 5 и 6 часами. Пришедший первым ждет другого не более 20 минут. Чему равна вероятность встречи студентов, если приход каждого из них в течение указанного часа может произойти наудачу, и моменты прихода независимы.

 Независимые случайные величины $X_1$, $X_2$,…, $X_{10}$ имеют нормальный закон распределения с параметрами m=1,5, σ=√3. Рассматривается случайная величина Y=$X_1$+$X_2$+…+$X_{10}$. С помощью неравенства Чебышева оценить вероятности P{8<Y<22}, P{|Y-15|>15}.

 В каждом из трех матчей футбольного турнира команда с вероятностью 0,5 одерживает победу, получая за нее 2 очка, с вероятностью 0,3 играет вничью, получая 1 очко, и с вероятностью 0,2 терпит поражение, не получая за это очков. Найти математическое ожидание и дисперсию числа набранных очков.

Back to top