Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №17.8


 Случайная величина X имеет нормальный закон распределения. Известно, что M(X)=-1; D(X)=2.

Найти:

а) плотность вероятности случайной величины X и ее значения в точках x =-2, x = 0, x = 1;

б) вероятности P{-3 < X < -1}, P{X > 0}.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

 Имеется пять билетов стоимостью по одному рублю, три билета по три рубля и два билета по пять рублей. Наугад берутся три билета. Найти вероятность того, что все три билета стоят семь рублей.

 Имеется три урны, в первой из которых 3 белых и 6 черных шаров, во второй — 4 белых и 4 черных и в третьей — 7 белых и 3 черных. Определить вероятность того, что при выборе из каждой урны по одному шару все они будут белыми.

 Для поражения трех целей орудие может произвести не более 8 выстрелов. Вероятность поражения цели при любом выстреле равна 0,3. Определить вероятность того, что будут израсходованы все снаряды, и все цели будут поражены.

 В каждом из двух таймов футбольного матча обе команды вместе забивают три мяча с вероятностью 0,2, два мяча — с вероятностью 0,1, один мяч — с вероятностью 0,3 и с вероятностью 0,4 не забивают мячей. Найти закон распределения и дисперсию общего числа забитых в матче мячей.

 Деталь, изготовленная автоматом, считается годной, если отклонение ее размера от проектного не превышает 7 мм. Случайные отклонения размера детали от проектного имеют нормальный закон распределения с параметрами m = 0 и σ = 4 мм. Сколько процентов годных деталей изготавливает автомат?

 Определить вероятность того, что выбранное наудачу целое число N при возведении в четвертую степень даст число, заканчивающееся единицей.

 На отрезке длины l наудачу выбраны две точки. Какова вероятность того, что расстояние между ними меньше l/4?

 В партии арбузов 10% недозрелых. Найти закон распределения и дисперсию случайного числа недозрелых арбузов среди трех купленных.

 Из полного набора костей домино наугад извлекается кость, затем она возвращается обратно и извлекается еще одна кость. Найти вероятность того, что на обеих костях нет цифр 4 и 3.

 Два студента условились встретиться в определенном месте между 5 и 6 часами. Пришедший первым ждет другого не более 20 минут. Чему равна вероятность встречи студентов, если приход каждого из них в течение указанного часа может произойти наудачу, и моменты прихода независимы.

 Независимые случайные величины $X_1$, $X_2$,…, $X_{10}$ имеют нормальный закон распределения с параметрами m=1,5, σ=√3. Рассматривается случайная величина Y=$X_1$+$X_2$+…+$X_{10}$. С помощью неравенства Чебышева оценить вероятности P{8<Y<22}, P{|Y-15|>15}.

 В каждом из трех матчей футбольного турнира команда с вероятностью 0,5 одерживает победу, получая за нее 2 очка, с вероятностью 0,3 играет вничью, получая 1 очко, и с вероятностью 0,2 терпит поражение, не получая за это очков. Найти математическое ожидание и дисперсию числа набранных очков.

 Из колоды в 32 карты наудачу извлечены 3 карты. Составить закон распределения числа карт бубновой масти среди отобранных.

 Вероятность попадания стрелком в десятку равна 0,7, а в девятку — 0,3. Определить вероятность того, что данный стрелок при трех выстрелах наберет не менее 29 очков.

Back to top