Значения a и b равновозможны в квадрате |a| $\leq$ 1, |b| $\leq$ 1 . Найти вероятность того,что корни квадратного трехчлена $x^2$ + 2ax + b действительны.
Другие задачи по теории вероятности
В круге проведен диаметр и перпендикулярный ему радиус, разделившие круг на 3 части. Найти вероятность того, что из трех точек, наудачу брошенных в круг, в каждой части окажется ровно по одной.
Вероятность появления герба при каждом из пяти бросков монеты равна 0,5. Составить ряд распределения отношения числа появлений герба к числу появлений цифры.
Из колоды в 36 карт выбираются 4 карты, причем каждая из них после определения ее масти и значения возвращается в колоду. Найти вероятность того, что будут выбраны карты одного значения.
Рассматриваются два числа x и y, удовлетворяющие условию $x^2$+$y^2$ $\leq$ 1. Найти вероятность того, что для наудачу выбранной из этого множества пары чисел выполняется условие x+y$\geq$1.
В урне содержится 3 белых, 8 черных и 8 красных шаров. Шары выбираются наугад, причем белый или черный шар в урну не возвращается, а извлеченный из урны красный шар после проверки его цвета укладывается назад в урну. Найти вероятность того, что два последовательно вынутых шара будут разных цветов.
По каналу связи передается одна из трех последовательностей букв : AAAA, BBBB или CCCC , вероятности которых равны соответственно 0,3, 0,4 и 0,3. Буква принимается правильно с вероятностью 0,6; вероятность ее приема за другую — 0,2 и 0,2 (буквы искажаются независимо друг от друга). Найти вероятность того, что передано AAAA, если получено ABCA.
Завод изготовляет изделия, каждое из которых должно подвергаться четырем видам испытаний. Первое испытание изделие проходит благополучно с вероятностью 0,9; второе — с вероятностью 0,95; третье — с вероятностью 0,8 и четвертое — с вероятностью 0,85. Найти вероятность того, что изделие пройдет благополучно ровно два испытания из четырех.