Завод изготовляет изделия, каждое из которых должно подвергаться четырем видам испытаний. Первое испытание изделие проходит благополучно с вероятностью 0,9; второе — с вероятностью 0,95; третье — с вероятностью 0,8 и четвертое — с вероятностью 0,85. Найти вероятность того, что изделие пройдет благополучно ровно два испытания из четырех.
Другие задачи по теории вероятности
Устройство состоит из 4 независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,2. Найти закон распределения и дисперсию случайного числа отказавших элементов в одном опыте.
Средняя температура T в холодильной камере равна 5°C, а ее среднее квадратическое отклонение — 0,4°C. C вероятностью, не меньшей 0,92, найти границы, в которых заключена величина T.
Из полного набора костей домино наугад выбираются две. Определить вероятность того, что на каждой из них есть ровно по одной из цифр 5 и 4.
Какова вероятность того, что участник игры в «Спортлото 6 из 49» угадает 4 номера?
В первой урне 2 белых и 4 черных шара, а во второй — 3 белых и 1 черный шар. Из первой урны переложили во вторую 2 шара. Найти вероятность того, что шар, вынутый из второй урны после перекладывания, окажется белым.
В каждом из трех периодов хоккейного матча команда забивает две шайбы с вероятностью 0,2, одну шайбу — с вероятностью 0,5 и не забивает шайб с вероятностью 0,3. Определить дисперсию числа шайб, забитых в матче.
Случайная величина X имеет нормальный закон распределения, причем M(X)=2, σ(X)=3. Найти P{X>1,5} и P{-1<X<3}.
По каналу связи передается одна из трех последовательностей букв : AAAA, BBBB или CCCC , вероятности которых равны соответственно 0,3, 0,4 и 0,3. Буква принимается правильно с вероятностью 0,6; вероятность ее приема за другую — 0,2 и 0,2 (буквы искажаются независимо друг от друга). Найти вероятность того, что передано AAAA, если получено ABCA.
В урне содержится 3 белых, 8 черных и 8 красных шаров. Шары выбираются наугад, причем белый или черный шар в урну не возвращается, а извлеченный из урны красный шар после проверки его цвета укладывается назад в урну. Найти вероятность того, что два последовательно вынутых шара будут разных цветов.
Рассматриваются два числа x и y, удовлетворяющие условию $x^2$+$y^2$ $\leq$ 1. Найти вероятность того, что для наудачу выбранной из этого множества пары чисел выполняется условие x+y$\geq$1.
Из колоды в 36 карт выбираются 4 карты, причем каждая из них после определения ее масти и значения возвращается в колоду. Найти вероятность того, что будут выбраны карты одного значения.
Вероятность появления герба при каждом из пяти бросков монеты равна 0,5. Составить ряд распределения отношения числа появлений герба к числу появлений цифры.
В круге проведен диаметр и перпендикулярный ему радиус, разделившие круг на 3 части. Найти вероятность того, что из трех точек, наудачу брошенных в круг, в каждой части окажется ровно по одной.
Значения a и b равновозможны в квадрате |a| $\leq$ 1, |b| $\leq$ 1 . Найти вероятность того,что корни квадратного трехчлена $x^2$ + 2ax + b действительны.
Загружаем...