Плотность вероятности непрерывной случайной величины X имеет вид:
Другие задачи по теории вероятности
Плотность вероятности непрерывной случайной величины X имеет вид:
Плотность вероятности непрерывной случайной величины X имеет вид:
Принимая вероятность рождения однополых близнецов вдвое большей, чем разнополых, вероятности рождения близнецов разного пола в любой последовательности одинаковыми, а вероятность рождения в двойне первым мальчика равной 0,51, определить вероятность рождения второго мальчика, если первым родился мальчик.
Во время эстафетных соревнований по биатлону спортсмену требуется поразить на огневом рубеже 5 мишеней, имея для этого 7 патронов. Вероятность попадания в мишень при выстреле составляет 0,7. Найти вероятность того, что непораженной останется одна мишень.
В розыгрыше первенства по баскетболу участвуют 18 команд, из которых случайным образом формируются две группы по 9 команд в каждой. Среди участников соревнований имеется 5 команд экстра-класса. Найти вероятность того, что две команды экстра-класса попадут в одну из групп, а три — в другую.
Вероятность появления некоторого события в каждом из 18 независимых опытов равна 0,2. Определить вероятность появления этого события по крайней мере 3 раза.
Значения a и b равновозможны в квадрате |a| $\leq$ 1, |b| $\leq$ 1 . Найти вероятность того,что корни квадратного трехчлена $x^2$ + 2ax + b действительны.
Плотность вероятности непрерывной случайной величины X имеет вид:
Плотность вероятности непрерывной случайной величины X имеет вид:
Случайная величина X имеет нормальный закон распределения. Известно, что P{X > 3} = 0,5, P{X < 4} = 0,95 .
Найти:
а) параметры m и σ закона распределения;
б) вероятность P{1 < X < 4}.
В каждом из двух таймов футбольного матча обе команды вместе забивают три мяча с вероятностью 0,3, два мяча — с вероятностью 0,3, один мяч — с вероятностью 0,1 и с вероятностью 0,3 не забивают мячей. Для случайной величины X — числа забитых в матче мячей — определить дисперсию.
Вероятность хотя бы одного появления события при четырех независимых опытах равна 0,59. Какова вероятность появления этого события в одном опыте, если она одинакова для всех опытов?
Как следует распределить по двум урнам 2 белых и 2 черных шара, чтобы вероятность вынуть белый шар из наугад выбранной урны была наибольшей?
Найти вероятность того, что дни рождения 12 человек придутся на разные месяцы года.
Загружаем...