Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №20.6


 В каждом из двух таймов футбольного матча обе команды вместе забивают три мяча с вероятностью 0,3, два мяча — с вероятностью 0,3, один мяч — с вероятностью 0,1 и с вероятностью 0,3 не забивают мячей. Для случайной величины X — числа забитых в матче мячей — определить дисперсию.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

 Случайная величина X имеет нормальный закон распределения. Известно, что P{X > 3} = 0,5, P{X < 4} = 0,95 .

Найти:

а) параметры m и σ закона распределения;

б) вероятность P{1 < X < 4}.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина примет значения из интервала (1,5; 1,7).

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X), D(X) и σ(X).
г) Найти вероятность того, что случайная величина X примет значения из интервала (0,5; 3).

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина X примет значения из интервала (2,5; 3,5).

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина X примет значения из интервала (0,4; 5,6).

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина X примет значения из интервала (0,1; 0,7).

 Принимая вероятность рождения однополых близнецов вдвое большей, чем разнополых, вероятности рождения близнецов разного пола в любой последовательности одинаковыми, а вероятность рождения в двойне первым мальчика равной 0,51, определить вероятность рождения второго мальчика, если первым родился мальчик.

 Вероятность хотя бы одного появления события при четырех независимых опытах равна 0,59. Какова вероятность появления этого события в одном опыте, если она одинакова для всех опытов?

 Как следует распределить по двум урнам 2 белых и 2 черных шара, чтобы вероятность вынуть белый шар из наугад выбранной урны была наибольшей?

 Найти вероятность того, что дни рождения 12 человек придутся на разные месяцы года.

 Случайная величина X имеет нормальный закон распределения с параметрами m=2, σ=4.

Найти:

а) вероятность P{-5 < X < 30};

б) интервал, симметрично расположенный относительно среднего значения, в который с вероятностью g = 0,9 попадет X.

 В каждом из трех матчей футбольного турнира команда с вероятностью 0,6 одерживает победу, получая за нее 2 очка, с вероятностью 0,3 играет вничью, получая 1 очко, и с вероятностью 0,1 терпит поражение, не получая за это очков. Найти закон распределения общего числа набранных очков.

 Во время эстафетных соревнований по биатлону спортсмену требуется поразить на огневом рубеже 5 мишеней, имея для этого 7 патронов. Вероятность попадания в мишень при выстреле составляет 0,9. Найти вероятность того, что непораженной останется одна мишень.

 Третья часть одной из трех партий деталей является второсортной, остальные детали во всех партиях первого сорта. Деталь, взятая из одной партии, оказалась первосортной. Определить вероятность того, что деталь была взята из партии, имеющей второсортные детали.

Back to top