Принимая вероятность рождения однополых близнецов вдвое большей, чем разнополых, вероятности рождения близнецов разного пола в любой последовательности одинаковыми, а вероятность рождения в двойне первым мальчика равной 0,51, определить вероятность рождения второго мальчика, если первым родился мальчик.
Другие задачи по теории вероятности
Во время эстафетных соревнований по биатлону спортсмену требуется поразить на огневом рубеже 5 мишеней, имея для этого 7 патронов. Вероятность попадания в мишень при выстреле составляет 0,7. Найти вероятность того, что непораженной останется одна мишень.
В розыгрыше первенства по баскетболу участвуют 18 команд, из которых случайным образом формируются две группы по 9 команд в каждой. Среди участников соревнований имеется 5 команд экстра-класса. Найти вероятность того, что две команды экстра-класса попадут в одну из групп, а три — в другую.
Вероятность появления некоторого события в каждом из 18 независимых опытов равна 0,2. Определить вероятность появления этого события по крайней мере 3 раза.
Значения a и b равновозможны в квадрате |a| $\leq$ 1, |b| $\leq$ 1 . Найти вероятность того,что корни квадратного трехчлена $x^2$ + 2ax + b действительны.
В круге проведен диаметр и перпендикулярный ему радиус, разделившие круг на 3 части. Найти вероятность того, что из трех точек, наудачу брошенных в круг, в каждой части окажется ровно по одной.
Вероятность появления герба при каждом из пяти бросков монеты равна 0,5. Составить ряд распределения отношения числа появлений герба к числу появлений цифры.
Из колоды в 36 карт выбираются 4 карты, причем каждая из них после определения ее масти и значения возвращается в колоду. Найти вероятность того, что будут выбраны карты одного значения.
Плотность вероятности непрерывной случайной величины X имеет вид:
Плотность вероятности непрерывной случайной величины X имеет вид:
Плотность вероятности непрерывной случайной величины X имеет вид:
Плотность вероятности непрерывной случайной величины X имеет вид:
Плотность вероятности непрерывной случайной величины X имеет вид:
Случайная величина X имеет нормальный закон распределения. Известно, что P{X > 3} = 0,5, P{X < 4} = 0,95 .
Найти:
а) параметры m и σ закона распределения;
б) вероятность P{1 < X < 4}.
В каждом из двух таймов футбольного матча обе команды вместе забивают три мяча с вероятностью 0,3, два мяча — с вероятностью 0,3, один мяч — с вероятностью 0,1 и с вероятностью 0,3 не забивают мячей. Для случайной величины X — числа забитых в матче мячей — определить дисперсию.
Загружаем...