На семи одинаковых карточках написаны соответственно числа 2, 4, 6, 7, 11, 12 и 13. Наугад берутся две карточки. Найти вероятность того, что образованная из двух полученных чисел дробь сократима.
Другие задачи по теории вероятности
На отрезке длины l наудачу ставятся две точки, в результате чего этот отрезок оказывается разделенным на три части. Определить вероятность того, что из трех получившихся частей отрезка можно построить треугольник.
Для поражения трех целей орудие может произвести не более 5 выстрелов. Вероятность поражения цели при любом выстреле равна 0,4. Найти вероятность того, что будут израсходованы все снаряды.
В студенческой группе из 20 человек 5 отличников. Случайным образом из списка группы выбираются 5 человек. Составить ряд распределения случайной величины X — числа отличников среди пятерых выбранных.
В каждом из трех матчей хоккейного турнира команда с вероятностью 0,7 одерживает победу, получая за нее 2 очка, с вероятностью 0,2 играет вничью, получая 1 очко, и с вероятностью 0,1 терпит поражение, не получая за это очков. Найти математическое ожидание и дисперсию числа набранных очков.
Случайная величина X имеет нормальный закон распределения с параметрами m=1, σ=2.
Найти вероятность того, что эта случайная величина принимает значение:
а) в интервале (–1;1);
б) большее 2;
г) отличающееся от своего среднего значения по абсолютной величине не больше, чем на 0,5.
Вероятность того, что изготовленная на первом станке деталь будет первосортной, равна 0,7. При изготовлении такой же детали на втором станке эта вероятность равна 0,8. На первом станке изготовлены две детали, на втором три. Найти вероятность того, что все детали первосортные.