В каждом из трех матчей хоккейного турнира команда с вероятностью 0,7 одерживает победу, получая за нее 2 очка, с вероятностью 0,2 играет вничью, получая 1 очко, и с вероятностью 0,1 терпит поражение, не получая за это очков. Найти математическое ожидание и дисперсию числа набранных очков.
Другие задачи по теории вероятности
Случайная величина X имеет нормальный закон распределения с параметрами m=1, σ=2.
Найти вероятность того, что эта случайная величина принимает значение:
а) в интервале (–1;1);
б) большее 2;
г) отличающееся от своего среднего значения по абсолютной величине не больше, чем на 0,5.
Вероятность того, что изготовленная на первом станке деталь будет первосортной, равна 0,7. При изготовлении такой же детали на втором станке эта вероятность равна 0,8. На первом станке изготовлены две детали, на втором три. Найти вероятность того, что все детали первосортные.
В семье 5 детей. Найти вероятность того, что среди этих детей — 3 девочки и 2 мальчика. Вероятности рождения мальчика и девочки предполагаются одинаковыми.
Завод изготовляет изделия, каждое из которых должно подвергаться четырем видам испытаний. Первое испытание изделие проходит благополучно с вероятностью 0,9; второе — с вероятностью 0,95; третье — с вероятностью 0,8 и четвертое — с вероятностью 0,85. Найти вероятность того, что изделие пройдет благополучно не менее двух испытаний из четырех.
В каждом из трех матчей хоккейного турнира команда с вероятностью 0,4 одерживает победу, получая за нее 2 очка, с вероятностью 0,4 играет вничью, получая 1 очко, и с вероятностью 0,2 терпит поражение, не получая за это очков. Найти закон распределения общего числа набранных очков.
Случайная величина X имеет нормальный закон распределения с параметрами m=-8, σ=2. Заданы точки –14, –10, –7, –3, 1 на числовой оси, разделяющие ее на 6 интервалов. Найти вероятности того, что случайная величина X принимает значения на этих интервалах.