- Генеральная совокупность. Выборки.
- Понятие оценки. Точечные оценки.
- Несмещенные, смещенные, состоятельные, эффективные оценки.
- Методы нахождения оценок.
- Методы сумм и произведений расчета сводных характеристик выборки.
- Оценка параметров генеральной совокупности по выборке.
- Определение эффективных оценок с помощью неравенства Рао-Крамера-Фреше.
- Интервальные оценки. Доверительная вероятность и предельная ошибка выборки.
- Оценка характеристик генеральной совокупности по малой выборке.
Найти методом произведений асимметрию и эксцесс по заданному распределению выборки объема n=100:
xi | 12 | 14 | 16 | 18 | 20 | 22 |
ni | 5 | 15 | 50 | 16 | 10 | 4 |
Найти методом сумм асимметрию и эксцесс по заданному распределению выборки объема n=100:
xi | 48 | 52 | 56 | 60 | 64 | 68 | 72 | 76 | 80 | 84 |
ni | 2 | 4 | 6 | 8 | 12 | 30 | 18 | 8 | 7 | 5 |
Случайная величина X (число семян сорняков в пробе зерна) распределена по закону Пуассона. Ниже приведено распределение семян сорняков в n=1000 пробах зерна (в первой строке указано количество xi сорняков в одной пробе; во второй строке указана частота ni - число проб, содержащих xi семян сорняков):
xi | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
ni | 405 | 366 | 175 | 40 | 8 | 4 | 2 |
Найти методом моментов точечную оценку неизвестного параметра распределения Пуассона.
Случайная величина X (число нестандартных изделий в партии изделий) распределена по закону Пуассона. Ниже приведено распределение нестандартных изделий в n=200 партиях (в первой строке указано количество xi нестандартных изделий в одной партии; во второй строке указана частота ni - число партий, содержащих xi , нестандартных изделий):
xi | 0 | 1 | 2 | 3 | 4 |
ni | 132 | 43 | 20 | 3 | 2 |
Найти методом моментов точечную оценку неизвестного параметра λ, распределения Пуассона.
Найти методом моментов по выборке x1, x2, ...., xn точечную оценку параметра p биномиального распределения:
где xi – число появлений события в i-ом опыте (i=1,2,3,…,n), m – количество испытаний в одном опыте.
Случайная величина X (число появлений события A в n независимых испытаниях) подчинена биномиальному закону распределения с неизвестным параметром p. Ниже приведено эмпирическое распределение числа появлений события в 10 опытах по 5 испытаний в каждом (в первой строке указано число xi появлений события A в одном опыте; во второй строке указана частота ni - количество опытов, в которых наблюдалось X; появлений события A):
xi | 0 | 1 | 2 | 3 | 4 |
ni | 5 | 2 | 1 | 1 | 1 |
Найти методом моментов точечную оценку параметра p биномиального распределения.
Найти методом моментов по выборке х1, х2,..., xn точечную оценку неизвестного параметра λ показательного распределения, плотность которого
Случайная величина X (время работы элемента) имеет показательное распределение f(x)=λe-λx (x≥0). Ниже приведено эмпирическое распределение среднего времени работы n=200 элементов (в первой строке приведено среднее время xi - работы элемента в часах; во второй строке указана частота ni - количество элементов, проработавших в среднем xi часов):
xi | 2,5 | 7,5 | 12,5 | 17,5 | 22,5 | 27,5 |
ni | 133 | 45 | 15 | 4 | 2 | 1 |
Найти методом моментов точечную оценку неизвестного параметра показательного распределения.
Найти методом моментов точечную оценку параметра p (вероятности) геометрического распределения
где xi - число испытаний, произведенных до появления события; p - вероятность появления события в одном испытании.
Найти методом моментов оценку параметра p (вероятности) геометрического распределения
если в четырех опытах событие появилось соответственно после двух, четырех, шести и восьми испытаний.
Устройство состоит из элементов, время безотказной работы которых подчинено гамма-распределению. Испытания пяти элементов дали следующие наработки (время работы элемента в часах до отказа): 50, 75, 125, 250, 300. Найти методом моментов точечные оценки неизвестных параметров α и β, которыми определяется гамма-распределение.
Найти методом моментов по выборке x1, x2,…, xn точечные оценки неизвестных параметров a и σ нормального распределения, плотность которого
Случайная величина X (отклонение контролируемого размера изделия от номинала) подчинена нормальному закону распределения с неизвестными параметрами a и σ. Ниже приведено эмпирическое распределение отклонения от номинала n=200 изделий (в первой строке указано отклонение xi (мм); во второй строке приведена частота ni - количество изделий, имеющих отклонение xi):
Найти методом моментов точечные оценки неизвестных параметров a и σ нормального распределения.
Найти методом моментов по выборке x1, x2,…, xn точечные оценки неизвестных параметров a и b равномерного распределения, плотность которого
Случайная величина X (ошибка измерения дальности радиодальномером) подчинена равномерному закону распределения с неизвестными параметрами a и b. Ниже приведено эмпирическое распределение средней ошибки n=200 измерений дальности (в первой строке указана средняя ошибка xi; во второй строке указана частота ni - количество измерений, имеющих среднюю ошибку xi):
Найти методом моментов точечные оценки неизвестных параметров a и b равномерного распределения.
Случайная величина X распределена по «двойному» закону Пуассона:
Ниже приведено эмпирическое распределение числа появлений события в n=327 испытаниях (в первой строке указано число xi появлений события; во второй строке приведена частота ni - количество испытаний, в которых появилось xi событий):
Найти методом моментов точечные оценки неизвестных параметров λ1 и λ2 «двойного распределения» Пуассона.
Случайная величина X (число появлений события A в m независимых испытаниях) подчинена биномиальному закону распределения с неизвестным параметром p. Ниже приведено эмпирическое распределение числа появлений события A в 1000 испытаниях (в первой строке указано число xi появлений события в одном опыте из m=10 испытаний, во второй строке приведена частота ni - число опытов, в которых наблюдалось xi появлений события A):
Найти методом наибольшего правдоподобия точечную оценку неизвестного параметра p биномиального распределения.
Случайная величина X (число появлений события A в m независимых испытаниях) подчинена закону распределения Пуассона с неизвестным параметром λ:
где m – количество испытаний в одном опыте, xi – число появлений события в i-ом опыте (i=1,2,3,…,n). Найти методом наибольшего правдоподобия по выборке x1, x2,…, xn точечную оценку неизвестного параметра λ распределения Пуассона.
Случайная величина X (число поврежденных стеклянных изделий в одном контейнере) распределена по закону Пуассона с неизвестным параметром λ. Ниже приведено эмпирическое распределение числа поврежденных изделий в 500 контейнерах (в первой строке указано количество xi поврежденных изделий в одном контейнере, во второй строке приведена частота ni - число контейнеров, содержащих xi поврежденных изделий):
Найти методом наибольшего правдоподобия точечную оценку неизвестного параметра λ распределения Пуассона.
Случайная величина X (время безотказной работы элемента) имеет показательное распределение f(x)= λe-λx (x≥0). Ниже приведено эмпирическое распределение среднего времени работы 1000 элементов (в первой строке указано среднее время xi безотказной работы одного элемента в часах; во второй строке указана частота ni - количество элементов, проработавших в среднем xi часов):
Найти методом наибольшего правдоподобия точечную оценку неизвестного параметра λ показательного распределения.
Найти методом наибольшего правдоподобия по выборке x1, x2,…, xn точечную оценку неизвестного параметра β гамма-распределения (параметр α известен), плотность которого
Устройство состоит из элементов, время безотказной работы которых подчинено гамма-распределению. Испытания пяти элементов дали следующие наработки (время работы элемента в часах до отказа): 50, 75, 125, 250, 300. Найти методом наибольшего правдоподобия точечную оценку одного неизвестного параметра β гамма-распределения, если второй параметр этого распределения α=1,12.
Найти методом наибольшего правдоподобия по выборке x1, x2,…, xn точечную оценку неизвестного параметра p геометрического распределения:
где xi - число испытаний, произведенных до появления события; p - вероятность появления события в одном испытании.
Найти методом наибольшего правдоподобия по выборке x1, x2,…, xn точечную оценку неизвестного параметра a (параметр σ известен) распределения Кептейна, плотность которого
где g(x) – дифференцируемая функция.
Найти методом наибольшего правдоподобия по выборке x1, x2,…, xn точечную оценку неизвестного параметра σ (параметр a известен) распределения Кептейна, плотность которого
где g(x) – дифференцируемая функция.
Найти методом сумм асимметрию и эксцесс по заданному распределению выборки объема n=100:
а)
б)
Найти методом наибольшего правдоподобия по выборке x1, x2,…, xn точечные оценки параметров a и σ нормального распределения, плотность которого
Найти доверительный интервал для оценки с надежностью 0,99 неизвестного математического ожидания a нормально распределенного признака X генеральной совокупности, если известно генеральное среднее квадратическое отклонение, выборочная средняя и объем выборки: а) σ=4, выборочная средняя равна 10,2, n=16; б) σ=5, выборочная средняя равна 16,8, n=25.
Одним и тем же прибором со средним квадратическим отклонением случайных ошибок измерений σ=40м произведено пять равноточных измерений расстояния от орудия до цели. Найти доверительный интервал для оценки истинного расстояния a до цели с надежностью γ=0,95, зная среднее арифметическое результатов измерений 2000м.
Предполагается, что результаты измерений распределены нормально.
Выборка из большой партии электроламп содержит 100 ламп. Средняя продолжительность горения лампы выборки оказалась равной 1000ч. Найти с надежностью 0,95 доверительный интервал для средней продолжительности a горения лампы всей партии, если известно, что среднее квадратическое отклонение продолжительности горения лампы σ=40ч. Предполагается, что продолжительность горения ламп распределена нормально.
Станок-автомат штампует валики. По выборке объема n=100 вычислена выборочная средняя диаметров изготовленных валиков. Найти с надежностью 0,95 точность δ, с которой выборочная средняя оценивает математическое ожидание диаметров изготовляемых валиков, зная, что их среднее квадратическое отклонение σ=2мм. Предполагается, что диаметры валиков распределены нормально.
Найти минимальный объем выборки, при котором с надежностью 0,925 точность оценки математического ожидания нормально распределенной генеральной совокупности по выборочной средней равна 0,2, если известно среднее квадратическое отклонение генеральной совокупности σ=1,5.
Из генеральной совокупности извлечена выборка объема n=12:
Оценить с надежностью 0,95 математическое ожидание a нормально распределенного признака генеральной совокупности по выборочной средней с помощью доверительного интервала.
По данным 16 независимых равноточных измерений некоторой физической величины найдены среднее арифметическое результатов измерений равное 42,8 и «исправленное» среднее квадратическое отклонение s=8. Оценить истинное значение измеряемой величины с надежностью γ=0,999.
По данным выборки объема n из генеральной совокупности нормально распределенного количественного признака найдено «исправленное» среднее квадратическое отклонение s. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение σ с надежностью 0,999, если: а) n=10, s=5,1; б) n=50, s=14.