Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №476, стр.165


Найти методом моментов по выборке х1, х2,..., xn точечную оценку неизвестного параметра λ показательного распределения, плотность которого

f(x)=λe-λx (x≥0).
Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Случайная величина X (время работы элемента) имеет показательное распределение f(x)=λe-λx (x≥0). Ниже приведено эмпирическое распределение среднего времени работы n=200 элементов (в первой строке приведено среднее время xi - работы элемента в часах; во второй строке указана частота ni - количество элементов, проработавших в среднем xi часов):

xi 2,5 7,5 12,5 17,5 22,5 27,5
ni 133 45 15 4 2 1

Найти методом моментов точечную оценку неизвестного параметра показательного распределения.

Найти методом моментов точечную оценку параметра p (вероятности) геометрического распределения

Р(Х=хi)=(1—p)xi-1∙p,

где xi - число испытаний, произведенных до появления события; p - вероятность появления события в одном испытании.

Найти методом моментов оценку параметра p (вероятности) геометрического распределения

Р(Х=хi)=(1—p)xi-1∙p,

если в четырех опытах событие появилось соответственно после двух, четырех, шести и восьми испытаний.

Устройство состоит из элементов, время безотказной работы которых подчинено гамма-распределению. Испытания пяти элементов дали следующие наработки (время работы элемента в часах до отказа): 50, 75, 125, 250, 300. Найти методом моментов точечные оценки неизвестных параметров α и β, которыми определяется гамма-распределение.

Найти методом моментов по выборке x1, x2,…, xn точечные оценки неизвестных параметров a и σ нормального распределения, плотность которого

f(x)=(1/(σ∙√2π))∙e-(x-a)^2/(2σ^2).

Случайная величина X (отклонение контролируемого размера изделия от номинала) подчинена нормальному закону распределения с неизвестными параметрами a и σ. Ниже приведено эмпирическое распределение отклонения от номинала n=200 изделий (в первой строке указано отклонение xi (мм); во второй строке приведена частота ni - количество изделий, имеющих отклонение xi):

Таблица параметров задачи

 

Найти методом моментов точечные оценки неизвестных параметров a и σ нормального распределения.

Найти методом моментов по выборке x1, x2,…, xn точечные оценки неизвестных параметров a и b равномерного распределения, плотность которого

f(x)=1/(b-a), (b>a).
Back to top