Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №505, стр.176


Станок-автомат штампует валики. По выборке объема n=100 вычислена выборочная средняя диаметров изготовленных валиков. Найти с надежностью 0,95 точность δ, с которой выборочная средняя оценивает математическое ожидание диаметров изготовляемых валиков, зная, что их среднее квадратическое отклонение σ=2мм. Предполагается, что диаметры валиков распределены нормально.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Найти минимальный объем выборки, при котором с надежностью 0,925 точность оценки математического ожидания нормально распределенной генеральной совокупности по выборочной средней равна 0,2, если известно среднее квадратическое отклонение генеральной совокупности σ=1,5.

Из генеральной совокупности извлечена выборка объема n=12:

Таблица значений задачи

Оценить с надежностью 0,95 математическое ожидание a нормально распределенного признака генеральной совокупности по выборочной средней с помощью доверительного интервала.

По данным 16 независимых равноточных измерений некоторой физической величины найдены среднее арифметическое результатов измерений равное 42,8 и «исправленное» среднее квадратическое отклонение s=8. Оценить истинное значение измеряемой величины с надежностью γ=0,999.

По данным выборки объема n из генеральной совокупности нормально распределенного количественного признака найдено «исправленное» среднее квадратическое отклонение s. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение σ с надежностью 0,999, если: а) n=10, s=5,1; б) n=50, s=14.

Произведено 10 измерений одним прибором (без систематической ошибки) некоторой физической величины, причем «исправленное» среднее квадратическое отклонение s случайных ошибок измерений оказалось равным 0,8. Найти точность прибора с надежностью 0,95. Предполагается, что результаты измерений распределены нормально.

Производятся независимые испытания с одинаковой, но неизвестной вероятностью p появления события A в каждом испытании. Найти доверительный интервал для оценки вероятности p с надежностью 0,99, если в 100 испытаниях событие A появилось 60 раз.

Произведено 300 испытаний, в каждом из которых неизвестная вероятность p появления события A постоянна. Событие A появилось в 250 испытаниях. Найти доверительный интервал, покрывающий неизвестную вероятность p с надежностью 0,95.

Back to top