Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №534, стр.190


Найти методом сумм асимметрию и эксцесс по заданному распределению выборки объема n=100:

а)

Таблица значений задачи

б)

Таблица значений задачи
Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

Найти методом наибольшего правдоподобия по выборке x1, x2,…, xn точечные оценки параметров a и σ нормального распределения, плотность которого

f(x)=1/(σ√2π)∙e-(x-a)^2/(2σ^2).

Найти доверительный интервал для оценки с надежностью 0,99 неизвестного математического ожидания a нормально распределенного признака X генеральной совокупности, если известно генеральное среднее квадратическое отклонение, выборочная средняя и объем выборки: а) σ=4, выборочная средняя равна 10,2, n=16; б) σ=5, выборочная средняя равна 16,8, n=25.

Одним и тем же прибором со средним квадратическим отклонением случайных ошибок измерений σ=40м произведено пять равноточных измерений расстояния от орудия до цели. Найти доверительный интервал для оценки истинного расстояния a до цели с надежностью γ=0,95, зная среднее арифметическое результатов измерений 2000м.

Предполагается, что результаты измерений распределены нормально.

Выборка из большой партии электроламп содержит 100 ламп. Средняя продолжительность горения лампы выборки оказалась равной 1000ч. Найти с надежностью 0,95 доверительный интервал для средней продолжительности a горения лампы всей партии, если известно, что среднее квадратическое отклонение продолжительности горения лампы σ=40ч. Предполагается, что продолжительность горения ламп распределена нормально.

Станок-автомат штампует валики. По выборке объема n=100 вычислена выборочная средняя диаметров изготовленных валиков. Найти с надежностью 0,95 точность δ, с которой выборочная средняя оценивает математическое ожидание диаметров изготовляемых валиков, зная, что их среднее квадратическое отклонение σ=2мм. Предполагается, что диаметры валиков распределены нормально.

Найти минимальный объем выборки, при котором с надежностью 0,925 точность оценки математического ожидания нормально распределенной генеральной совокупности по выборочной средней равна 0,2, если известно среднее квадратическое отклонение генеральной совокупности σ=1,5.

Из генеральной совокупности извлечена выборка объема n=12:

Таблица значений задачи

Оценить с надежностью 0,95 математическое ожидание a нормально распределенного признака генеральной совокупности по выборочной средней с помощью доверительного интервала.

Найти методом наибольшего правдоподобия по выборке x1, x2,…, xn точечную оценку неизвестного параметра σ (параметр a известен) распределения Кептейна, плотность которого

f(x)=[g'(x)/(σ√2π)]∙e-[g(x)-a]^2/(2σ^2),

где g(x) – дифференцируемая функция.

Найти методом наибольшего правдоподобия по выборке x1, x2,…, xn точечную оценку неизвестного параметра a (параметр σ известен) распределения Кептейна, плотность которого

f(x)=[g'(x)/(σ√2π)]∙e-[g(x)-a]^2/(2σ^2),

где g(x) – дифференцируемая функция.

Найти методом наибольшего правдоподобия по выборке x1, x2,…, xn точечную оценку неизвестного параметра p геометрического распределения:

P(X=xi)=(1-p)xi-1∙p,

где xi - число испытаний, произведенных до появления события; p - вероятность появления события в одном испытании.

Устройство состоит из элементов, время безотказной работы которых подчинено гамма-распределению. Испытания пяти элементов дали следующие наработки (время работы элемента в часах до отказа): 50, 75, 125, 250, 300. Найти методом наибольшего правдоподобия точечную оценку одного неизвестного параметра β гамма-распределения, если второй параметр этого распределения α=1,12.

Найти методом наибольшего правдоподобия по выборке x1, x2,…, xn точечную оценку неизвестного параметра β гамма-распределения (параметр α известен), плотность которого

f(x)=1/( βα+1∙Г(α+1) )∙xα∙e-x/β ((α>-1, β>0,x≥0).

Случайная величина X (время безотказной работы элемента) имеет показательное распределение f(x)= λe-λx (x≥0). Ниже приведено эмпирическое распределение среднего времени работы 1000 элементов (в первой строке указано среднее время xi безотказной работы одного элемента в часах; во второй строке указана частота ni - количество элементов, проработавших в среднем xi часов):

Таблица значений задачи

Найти методом наибольшего правдоподобия точечную оценку неизвестного параметра λ показательного распределения.

Случайная величина X (число поврежденных стеклянных изделий в одном контейнере) распределена по закону Пуассона с неизвестным параметром λ. Ниже приведено эмпирическое распределение числа поврежденных изделий в 500 контейнерах (в первой строке указано количество xi поврежденных изделий в одном контейнере, во второй строке приведена частота ni - число контейнеров, содержащих xi поврежденных изделий):

Таблица значений задачи

Найти методом наибольшего правдоподобия точечную оценку неизвестного параметра λ распределения Пуассона.

Back to top