- Генеральная совокупность. Выборки.
- Понятие оценки. Точечные оценки.
- Несмещенные, смещенные, состоятельные, эффективные оценки.
- Методы нахождения оценок.
- Методы сумм и произведений расчета сводных характеристик выборки.
- Оценка параметров генеральной совокупности по выборке.
- Определение эффективных оценок с помощью неравенства Рао-Крамера-Фреше.
- Интервальные оценки. Доверительная вероятность и предельная ошибка выборки.
- Оценка характеристик генеральной совокупности по малой выборке.
Произведено 10 измерений одним прибором (без систематической ошибки) некоторой физической величины, причем «исправленное» среднее квадратическое отклонение s случайных ошибок измерений оказалось равным 0,8. Найти точность прибора с надежностью 0,95. Предполагается, что результаты измерений распределены нормально.
Производятся независимые испытания с одинаковой, но неизвестной вероятностью p появления события A в каждом испытании. Найти доверительный интервал для оценки вероятности p с надежностью 0,99, если в 100 испытаниях событие A появилось 60 раз.
Произведено 300 испытаний, в каждом из которых неизвестная вероятность p появления события A постоянна. Событие A появилось в 250 испытаниях. Найти доверительный интервал, покрывающий неизвестную вероятность p с надежностью 0,95.
Решить пример 9.19 при условии, что население города неизвестно, а известно лишь, что оно очень большое по сравнению с объемом выборки.
В 360 испытаниях, в каждом из которых вероятность появления события одинакова и неизвестна, событие A появилось 270 раз. Найти доверительный интервал, покрывающий неизвестную вероятность p с надежностью 0,95.
По данным примера 9.19 необходимо: 1. а) Найти вероятность того, что доля малообеспеченных жителей города (с доходом менее 500руб.) отличается от доли таких же жителей в выборке не более, чем на 0,01 (по абсолютной величине); б) определить границы, в которых с надежностью 0,98 заключена доля малообеспеченных жителей города. 2. Каким должен быть объем выборки, чтобы те же границы для доли малообеспеченных жителей города гарантировать с надежностью 0,9973? 3. Как изменились бы результаты, полученные в п.1.а) и 2, если бы о доле малообеспеченных жителей вообще не было ничего известно?
Среди 250 деталей, изготовленных станком-автоматом, оказалось 32 нестандартных. Найти доверительный интервал, покрывающий с надежностью 0,99 неизвестную вероятность p изготовления станком нестандартной детали.
При испытаниях 1000 элементов зарегистрировано 100 отказов. Найти доверительный интервал, покрывающий неизвестную вероятность p отказа элемента с надежностью: а) 0,95; б) 0,99.
Решить пример 9.21 при условии, что население города неизвестно, а известно лишь, что оно очень большое по сравнению с объемом выборки.
Из 5000 вкладчиков банка по схеме случайной бесповторной выборки было отобрано 300 вкладчиков. Средний размер вклада в выборке составил 8000руб., а среднее квадратическое отклонение 2500руб. Какова вероятность того, что средний размер вклада случайно выбранного вкладчика отличается от его среднего размера в выборке не более, чем на 100руб. (по абсолютной величине)?
Найти методом произведений выборочную среднюю и выборочную дисперсию по заданному распределению выборки:
а)
б)
При вычислении дисперсии распределения неравноотстоящих вариант выборка была разбита на пять интервалов длины h=12. Выборочная дисперсия равноотстоящих вариант (середин частичных интервалов) DВ=52,4. Найти выборочную дисперсию, учитывая поправку Шеппарда.
В результате выборочного наблюдения получены следующие данные о часовой выработке (в ед./ч) 50 рабочих, отобранных из 1000 рабочих цеха:
1) Найти (с надежностью 0,95) максимальное отклонение средней часовой выработки рабочих в выборке от средней во всем цехе (по абсолютной величине), если выборка: а) повторная; б) бесповторная. 2) Найти объем выборки, при котором с надежностью 0,99 можно гарантировать вдвое меньшее максимальное отклонение тех же характеристик.
а) Найти методом произведений выборочную среднюю и выборочную дисперсию по заданному распределению неравноотстоящих вариант выборки объема n=50:
б) найти выборочную дисперсию с учетом поправки Шеппарда.
Из партии, содержащей 8000 телевизоров, отобрано 800. Среди них оказалось 10% не удовлетворяющих стандарту. Найти границы, в которых с вероятностью 0,95 заключена доля телевизоров, удовлетворяющих стандарту во всей партии для повторной и бесповторной выборки.
По результатам социологического обследования при опросе 1500 респондентов рейтинг президента (т.е. процент опрошенных, одобряющих его деятельность) составил 30%. Найти границы, в которых с надежностью 0,95 заключен рейтинг президента (при опросе всех жителей страны). Сколько респондентов надо опросить, чтобы с надежностью 0,99 гарантировать предельную ошибку социологического обследования не более 1%? Тот же вопрос, если никаких данных о рейтинге президента нет.
а) Найти методом произведений выборочную среднюю и выборочную дисперсию по заданному распределению неравноотстоящих вариант выборки объема n=100:
б) найти выборочную дисперсию с учетом поправки Шеппарда.
Каким должен быть объем выборки, отобранной по схеме случайной бесповторной выборки из партии, содержащей 8000 деталей, чтобы с вероятностью 0,994 можно было утверждать, что доли первосортных деталей в выборке и во всей партии отличаются не более чем на 0,05 (по абсолютной величине)? Задачу решить для случаев: а) о доле первосортных деталей во всей партии ничего неизвестно; б) их не более 80%.
Производятся независимые испытания с одинаковой, но неизвестной вероятностью p появления события A в каждом испытании. Найти доверительный интервал для оценки вероятности p с надежностью γ=0,95, если в n=60 испытаниях событие A появилось m=15 раз.
Решить пример 9.28 при γ=0,9; n=10; m=2.
Из большой партии по схеме случайной повторной выборки было проверено 150 изделий с целью определения процента влажности древесины, из которой изготовлены эти изделия. Получены следующие результаты:
Считая, что процент влажности изделия - случайная величина, распределенная по нормальному закону, найти: а) вероятность того, что средний процент влажности заключен в границах от 12,5 до 17,5; б) границы, в которых с вероятностью 0,95 будет заключен средний процент влажности изделий во всей партии.
По данным 9 измерений некоторой величины найдены средняя результатов измерений 30 и выборочная дисперсия s2=36. Найти границы, в которых с надежностью 0,99 заключено истинное значение измеряемой величины.
Найти методом сумм выборочную среднюю и выборочную дисперсию по заданному распределению выборки объема n=100:
а)
б)
в)
г)
Произведено 12 измерений одним прибором (без систематической ошибки) некоторой величины, имеющей нормальное распределение, причем выборочная дисперсия случайных ошибок измерений оказалась равной 0,36. Найти границы, в которых с надежностью 0,95 заключено среднее квадратическое отклонение случайных ошибок измерений, характеризующих точность прибора.
Решить задачу, приведенную в примере 9.32, при n=100 измерений.
Найти методом произведений асимметрию и эксцесс по заданному распределению выборки объема n=100:
а)
б)
Распределение 200 элементов (устройств) по времени безотказной работы (в часах) представлено в таблице:
Предполагая, что время безотказной работы элементов имеет показательный закон распределения, найти: а) вероятность того, что время безотказной работы будет заключено в пределах от 3 до 8 ч; б) границы, в которых с надежностью 0,95 будет заключено среднее время безотказной работы элементов.
Для изучения различных демографических характеристик населения выборочно обследовалось 300 семей города. Оказалось, что среди обследованных семей 15% состоят из двух человек. В каких пределах находится в генеральной совокупности доля семей, состоящих из двух человек, если принять доверительную вероятность равной 0,95?
Заданы среднее квадратическое отклонение σ нормально распределенной случайной величины Х, выборочная средняя xB и объем выборки n. Найти доверительный интервал для оценки неизвестного математического ожидания a с заданной надежностью γ=0,95. xB=25,75; n=121; σ=11.