По данным примера 9.19 необходимо: 1. а) Найти вероятность того, что доля малообеспеченных жителей города (с доходом менее 500руб.) отличается от доли таких же жителей в выборке не более, чем на 0,01 (по абсолютной величине); б) определить границы, в которых с надежностью 0,98 заключена доля малообеспеченных жителей города. 2. Каким должен быть объем выборки, чтобы те же границы для доли малообеспеченных жителей города гарантировать с надежностью 0,9973? 3. Как изменились бы результаты, полученные в п.1.а) и 2, если бы о доле малообеспеченных жителей вообще не было ничего известно?
Другие задачи по теории вероятности
Решить пример 9.21 при условии, что население города неизвестно, а известно лишь, что оно очень большое по сравнению с объемом выборки.
Из 5000 вкладчиков банка по схеме случайной бесповторной выборки было отобрано 300 вкладчиков. Средний размер вклада в выборке составил 8000руб., а среднее квадратическое отклонение 2500руб. Какова вероятность того, что средний размер вклада случайно выбранного вкладчика отличается от его среднего размера в выборке не более, чем на 100руб. (по абсолютной величине)?
В результате выборочного наблюдения получены следующие данные о часовой выработке (в ед./ч) 50 рабочих, отобранных из 1000 рабочих цеха:
1) Найти (с надежностью 0,95) максимальное отклонение средней часовой выработки рабочих в выборке от средней во всем цехе (по абсолютной величине), если выборка: а) повторная; б) бесповторная. 2) Найти объем выборки, при котором с надежностью 0,99 можно гарантировать вдвое меньшее максимальное отклонение тех же характеристик.
Из партии, содержащей 8000 телевизоров, отобрано 800. Среди них оказалось 10% не удовлетворяющих стандарту. Найти границы, в которых с вероятностью 0,95 заключена доля телевизоров, удовлетворяющих стандарту во всей партии для повторной и бесповторной выборки.
По результатам социологического обследования при опросе 1500 респондентов рейтинг президента (т.е. процент опрошенных, одобряющих его деятельность) составил 30%. Найти границы, в которых с надежностью 0,95 заключен рейтинг президента (при опросе всех жителей страны). Сколько респондентов надо опросить, чтобы с надежностью 0,99 гарантировать предельную ошибку социологического обследования не более 1%? Тот же вопрос, если никаких данных о рейтинге президента нет.
Каким должен быть объем выборки, отобранной по схеме случайной бесповторной выборки из партии, содержащей 8000 деталей, чтобы с вероятностью 0,994 можно было утверждать, что доли первосортных деталей в выборке и во всей партии отличаются не более чем на 0,05 (по абсолютной величине)? Задачу решить для случаев: а) о доле первосортных деталей во всей партии ничего неизвестно; б) их не более 80%.
Производятся независимые испытания с одинаковой, но неизвестной вероятностью p появления события A в каждом испытании. Найти доверительный интервал для оценки вероятности p с надежностью γ=0,95, если в n=60 испытаниях событие A появилось m=15 раз.