а) Найти методом произведений выборочную среднюю и выборочную дисперсию по заданному распределению неравноотстоящих вариант выборки объема n=100:
б) найти выборочную дисперсию с учетом поправки Шеппарда.
Другие задачи по теории вероятности
Найти методом сумм выборочную среднюю и выборочную дисперсию по заданному распределению выборки объема n=100:
а)
б)
в)
г)
Найти методом произведений асимметрию и эксцесс по заданному распределению выборки объема n=100:
а)
б)
По двум независимым выборкам, объемы которых n1=11 и n2=14, извлеченным из нормальных генеральных совокупностей X и Y, найдены исправленные выборочные дисперсии sX2=0,76 и sY2=0,38. При уровне значимости α=0,05, проверить нулевую гипотезу H0:D(X)=D(Y) о равенстве генеральных дисперсий, при конкурирующей гипотезе H1:D(X)>D(Y).
По двум независимым выборкам, объемы которых n1=9 и n2=16, извлеченным из нормальных генеральных совокупностей X и Y, найдены исправленные выборочные дисперсии sX2=34,02 и sY2=12,15. При уровне значимости α=0,01, проверить нулевую гипотезу H0:D(X)=D(Y) о равенстве генеральных дисперсий, при конкурирующей гипотезе H1:D(X)>D(Y).
По двум независимым выборкам, объемы которых n1=14 и n2=10, извлеченным из нормальных генеральных совокупностей X и Y, найдены исправленные выборочные дисперсии sX2=0,84 и sY2=2,52. При уровне значимости α=0,1, проверить нулевую гипотезу H0:D(X)=D(Y) о равенстве генеральных дисперсий, при конкурирующей гипотезе H1:D(X)≠D(Y).
По двум независимым выборкам, объемы которых n1=9 и n2=6, извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные дисперсии DВ(X)=14,4 и DВ(Y)=20,5. При уровне значимости α=0,1, проверить нулевую гипотезу H0:D(X)=D(Y) о равенстве генеральных дисперсий, при конкурирующей гипотезе H1:D(X)≠D(Y).
Двумя методами проведены измерения одной и той же физической величины.
Получены следующие результаты:
а) в первом случае: x1=9,6; x2=10,0; x3=9,8; x4=10,2; x5=10,6;
б) во втором случае: y1=10,4; y2=9,7; y3=10,0; y4=10,3.
Можно ли считать, что оба метода обеспечивают одинаковую точность измерений, если принять уровень значимости α=0,1? Предполагается, что результаты измерений распределены нормально и выборки независимы.
а) Найти методом произведений выборочную среднюю и выборочную дисперсию по заданному распределению неравноотстоящих вариант выборки объема n=50:
б) найти выборочную дисперсию с учетом поправки Шеппарда.
При вычислении дисперсии распределения неравноотстоящих вариант выборка была разбита на пять интервалов длины h=12. Выборочная дисперсия равноотстоящих вариант (середин частичных интервалов) DВ=52,4. Найти выборочную дисперсию, учитывая поправку Шеппарда.
Найти методом произведений выборочную среднюю и выборочную дисперсию по заданному распределению выборки:
а)
б)
При испытаниях 1000 элементов зарегистрировано 100 отказов. Найти доверительный интервал, покрывающий неизвестную вероятность p отказа элемента с надежностью: а) 0,95; б) 0,99.
Среди 250 деталей, изготовленных станком-автоматом, оказалось 32 нестандартных. Найти доверительный интервал, покрывающий с надежностью 0,99 неизвестную вероятность p изготовления станком нестандартной детали.
В 360 испытаниях, в каждом из которых вероятность появления события одинакова и неизвестна, событие A появилось 270 раз. Найти доверительный интервал, покрывающий неизвестную вероятность p с надежностью 0,95.
Произведено 300 испытаний, в каждом из которых неизвестная вероятность p появления события A постоянна. Событие A появилось в 250 испытаниях. Найти доверительный интервал, покрывающий неизвестную вероятность p с надежностью 0,95.
Загружаем...