Распределение 200 элементов (устройств) по времени безотказной работы (в часах) представлено в таблице:
![]()
Предполагая, что время безотказной работы элементов имеет показательный закон распределения, найти: а) вероятность того, что время безотказной работы будет заключено в пределах от 3 до 8 ч; б) границы, в которых с надежностью 0,95 будет заключено среднее время безотказной работы элементов.
Другие задачи по теории вероятности
По выборкам объемом n1=14 и n2=9 найдены средние размеры деталей соответственно 182 и 185мм, изготовленных на первом и втором автоматах. Установлено, что размер детали, изготовленной каждым автоматом, имеет нормальный закон распределения. Известны дисперсии σx2=5 и σy2=7 для первого и второго автоматов. На уровне значимости 0,05 выявить влияние на средний размер детали автомата, на котором она изготовлена. Рассмотреть два случая: а) конкурирующая гипотеза H1: x0≠y0 ; б) конкурирующая гипотеза H1: x0<y0.
Расход сырья на единицу продукции составил:


Полагая, что расходы сырья по каждой технологии имеют нормальные распределения с одинаковыми дисперсиями, на уровне значимости 0,05 выяснить, дает ли новая технология экономию в среднем расходе сырья.
В рекламе утверждается, что месячный доход по акциям A превышает доход по акциям B более чем на 0,3% (или на 0,003). В течение годичного периода средний месячный доход по акциям B составил 0,5%, а по акциям A - 0,65%, а его средние квадратические отклонения соответственно 1,9 и 2,0%. Полагая распределения доходности по каждой акции нормальными, на уровне значимости 0,05 проверить утверждение, содержащееся в рекламе.
Имеются следующие данные о качестве детского питания, изготовленного различными фирмами (в баллах): 40, 39, 42, 37, 38, 43, 45, 41, 48. Есть основание полагать, что показатель качества продукции последней фирмы (48) зарегистрирован неверно. Является ли это значение аномальным (резко выделяющимся) на 5%-ном уровне значимости?
Вступительный экзамен проводился на двух факультетах института. На финансово-кредитном факультете из n1=900 абитуриентов выдержали экзамен m1=500 человек; а на учетно-статистическом факультете из n2=800 абитуриентов - m2=408. На уровне значимости α=0,05 проверить гипотезу об отсутствии существенных различий в уровне подготовки абитуриентов двух факультетов. Рассмотреть два случая: а) конкурирующая гипотеза H1: p1≠p2; б) конкурирующая гипотеза H1: p1>p2.
В результате выборочной проверки качества однотипных изделий оказалось, что из 300 изделий фирмы A бракованных 30, из 400 фирмы B - 52, из 250 фирмы C - 21 и из 500 изделий фирмы D бракованных 74 изделия. На уровне значимости 0,05 выяснить, можно ли считать, что различия в качестве изделий различных фирм существенны.
По данным примера 10.16 выяснить, являются ли существенными различия между дисперсиями расхода сырья на единицу продукции при использовании старой и новой технологий: а) на уровне значимости 0,05 при конкурирующей гипотезе σx2>σy2; б) на уровне значимости 0,02 при конкурирующей гипотезе σx2≠σy2.
Решить задачу, приведенную в примере 9.32, при n=100 измерений.
Произведено 12 измерений одним прибором (без систематической ошибки) некоторой величины, имеющей нормальное распределение, причем выборочная дисперсия случайных ошибок измерений оказалась равной 0,36. Найти границы, в которых с надежностью 0,95 заключено среднее квадратическое отклонение случайных ошибок измерений, характеризующих точность прибора.
По данным 9 измерений некоторой величины найдены средняя результатов измерений 30 и выборочная дисперсия s2=36. Найти границы, в которых с надежностью 0,99 заключено истинное значение измеряемой величины.
Из большой партии по схеме случайной повторной выборки было проверено 150 изделий с целью определения процента влажности древесины, из которой изготовлены эти изделия. Получены следующие результаты:
![]()
Считая, что процент влажности изделия - случайная величина, распределенная по нормальному закону, найти: а) вероятность того, что средний процент влажности заключен в границах от 12,5 до 17,5; б) границы, в которых с вероятностью 0,95 будет заключен средний процент влажности изделий во всей партии.
Решить пример 9.28 при γ=0,9; n=10; m=2.
Производятся независимые испытания с одинаковой, но неизвестной вероятностью p появления события A в каждом испытании. Найти доверительный интервал для оценки вероятности p с надежностью γ=0,95, если в n=60 испытаниях событие A появилось m=15 раз.
Каким должен быть объем выборки, отобранной по схеме случайной бесповторной выборки из партии, содержащей 8000 деталей, чтобы с вероятностью 0,994 можно было утверждать, что доли первосортных деталей в выборке и во всей партии отличаются не более чем на 0,05 (по абсолютной величине)? Задачу решить для случаев: а) о доле первосортных деталей во всей партии ничего неизвестно; б) их не более 80%.
Загружаем...